File: cohens_d.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (298 lines) | stat: -rw-r--r-- 9,869 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#' Cohen's *d* and Other Standardized Differences
#'
#' Compute effect size indices for standardized differences: Cohen's *d*,
#' Hedges' *g* and Glass’s *delta* (\eqn{\Delta}). (This function returns the
#' **population** estimate.) Pair with any reported [`stats::t.test()`].
#' \cr\cr
#' Both Cohen's *d* and Hedges' *g* are the estimated the standardized
#' difference between the means of two populations. Hedges' *g* provides a bias
#' correction (using the exact method) to Cohen's *d* for small sample sizes.
#' For sample sizes > 20, the results for both statistics are roughly
#' equivalent. Glass’s *delta* is appropriate when the standard deviations are
#' significantly different between the populations, as it uses only the *second*
#' group's standard deviation.
#'
#' @param x,y A numeric vector, or a character name of one in `data`.
#'   Any missing values (`NA`s) are dropped from the resulting vector.
#'   `x` can also be a formula (see [`stats::t.test()`]), in which case `y` is
#'   ignored.
#' @param alternative a character string specifying the alternative hypothesis;
#'   Controls the type of CI returned: `"two.sided"` (default, two-sided CI),
#'   `"greater"` or `"less"` (one-sided CI). Partial matching is allowed (e.g.,
#'   `"g"`, `"l"`, `"two"`...). See *One-Sided CIs* in [effectsize_CIs].
#' @param data An optional data frame containing the variables.
#' @param pooled_sd If `TRUE` (default), a [sd_pooled()] is used (assuming equal
#'   variance). Else the mean SD from both groups is used instead.
#' @param paired If `TRUE`, the values of `x` and `y` are considered as paired.
#'   This produces an effect size that is equivalent to the one-sample effect
#'   size on `x - y`.
#' @param ... Arguments passed to or from other methods. When `x` is a formula,
#'   these can be `subset` and `na.action`.
#' @inheritParams chisq_to_phi
#' @inheritParams eta_squared
#' @inheritParams stats::t.test
#'
#' @note The indices here give the population estimated standardized difference.
#'   Some statistical packages give the sample estimate instead (without
#'   applying Bessel's correction).
#'
#' @details
#' Set `pooled_sd = FALSE` for effect sizes that are to accompany a Welch's
#' *t*-test (Delacre et al, 2021).
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @return A data frame with the effect size ( `Cohens_d`, `Hedges_g`,
#'   `Glass_delta`) and their CIs (`CI_low` and `CI_high`).
#'
#' @family standardized differences
#' @seealso [sd_pooled()], [t_to_d()], [r_to_d()]
#'
#' @examples
#' \donttest{
#' data(mtcars)
#' mtcars$am <- factor(mtcars$am)
#'
#' # Two Independent Samples ----------
#'
#' (d <- cohens_d(mpg ~ am, data = mtcars))
#' # Same as:
#' # cohens_d("mpg", "am", data = mtcars)
#' # cohens_d(mtcars$mpg[mtcars$am=="0"], mtcars$mpg[mtcars$am=="1"])
#'
#' # More options:
#' cohens_d(mpg ~ am, data = mtcars, pooled_sd = FALSE)
#' cohens_d(mpg ~ am, data = mtcars, mu = -5)
#' cohens_d(mpg ~ am, data = mtcars, alternative = "less")
#' hedges_g(mpg ~ am, data = mtcars)
#' glass_delta(mpg ~ am, data = mtcars)
#'
#'
#' # One Sample ----------
#'
#' cohens_d(wt ~ 1, data = mtcars)
#'
#' # same as:
#' # cohens_d("wt", data = mtcars)
#' # cohens_d(mtcars$wt)
#'
#' # More options:
#' cohens_d(wt ~ 1, data = mtcars, mu = 3)
#' hedges_g(wt ~ 1, data = mtcars, mu = 3)
#'
#'
#' # Paired Samples ----------
#'
#' data(sleep)
#'
#' cohens_d(Pair(extra[group == 1], extra[group == 2]) ~ 1, data = sleep)
#'
#' # same as:
#' # cohens_d(sleep$extra[sleep$group == 1], sleep$extra[sleep$group == 2], paired = TRUE)
#'
#' # More options:
#' cohens_d(Pair(extra[group == 1], extra[group == 2]) ~ 1, data = sleep, mu = -1)
#' hedges_g(Pair(extra[group == 1], extra[group == 2]) ~ 1, data = sleep)
#'
#'
#' # Interpretation -----------------------
#' interpret_cohens_d(-1.48, rules = "cohen1988")
#' interpret_hedges_g(-1.48, rules = "sawilowsky2009")
#' interpret_glass_delta(-1.48, rules = "gignac2016")
#' # Or:
#' interpret(d, rules = "sawilowsky2009")
#'
#' # Common Language Effect Sizes
#' d_to_u3(1.48)
#' # Or:
#' print(d, append_CLES = TRUE)
#' }
#'
#' @references
#' - Algina, J., Keselman, H. J., & Penfield, R. D. (2006). Confidence intervals
#' for an effect size when variances are not equal. Journal of Modern Applied
#' Statistical Methods, 5(1), 2.
#'
#' - Cohen, J. (1988). Statistical power analysis for the behavioral
#' sciences (2nd Ed.). New York: Routledge.
#'
#' - Delacre, M., Lakens, D., Ley, C., Liu, L., & Leys, C. (2021, May 7). Why
#' Hedges’ g*s based on the non-pooled standard deviation should be reported
#' with Welch's t-test. \doi{10.31234/osf.io/tu6mp}
#'
#' - Hedges, L. V. & Olkin, I. (1985). Statistical methods for
#' meta-analysis. Orlando, FL: Academic Press.
#'
#' - Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis:
#' Correcting error and bias in research findings. Sage.
#'
#' @importFrom stats var model.frame
#' @export
cohens_d <- function(x, y = NULL, data = NULL,
                     pooled_sd = TRUE, mu = 0, paired = FALSE,
                     ci = 0.95, alternative = "two.sided",
                     verbose = TRUE, ...) {
  var.equal <- eval.parent(match.call()[["var.equal"]])
  if (!is.null(var.equal)) pooled_sd <- var.equal

  .effect_size_difference(
    x,
    y = y, data = data,
    type = "d",
    pooled_sd = pooled_sd, mu = mu, paired = paired,
    ci = ci, alternative = alternative,
    verbose = verbose,
    ...
  )
}

#' @rdname cohens_d
#' @export
hedges_g <- function(x, y = NULL, data = NULL,
                     pooled_sd = TRUE, mu = 0, paired = FALSE,
                     ci = 0.95, alternative = "two.sided",
                     verbose = TRUE, ...) {
  var.equal <- eval.parent(match.call()[["var.equal"]])
  if (!is.null(var.equal)) pooled_sd <- var.equal

  .effect_size_difference(
    x,
    y = y, data = data,
    type = "g",
    pooled_sd = pooled_sd, mu = mu, paired = paired,
    ci = ci, alternative = alternative,
    verbose = verbose,
    ...
  )
}

#' @rdname cohens_d
#' @export
glass_delta <- function(x, y = NULL, data = NULL,
                        mu = 0,
                        ci = 0.95, alternative = "two.sided",
                        verbose = TRUE, ...) {
  .effect_size_difference(
    x,
    y = y, data = data,
    type = "delta",
    mu = mu,
    ci = ci, alternative = alternative,
    verbose = verbose,
    pooled_sd = NULL, paired = FALSE,
    ...
  )
}



#' @importFrom stats sd
#' @keywords internal
.effect_size_difference <- function(x, y = NULL, data = NULL,
                                    type = "d",
                                    mu = 0, pooled_sd = TRUE, paired = FALSE,
                                    ci = 0.95, alternative = "two.sided",
                                    verbose = TRUE, ...) {
  if (type != "delta") {
    if (.is_htest_of_type(x, "t-test")) {
      return(effectsize(x, type = type, verbose = verbose, ...))
    } else if (.is_BF_of_type(x, c("BFoneSample", "BFindepSample"), "t-squared")) {
      return(effectsize(x, ci = ci, verbose = verbose, ...))
    }
  }


  alternative <- .match.alt(alternative)
  out <- .get_data_2_samples(x, y, data, paired = paired, verbose = verbose, ...)
  x <- out[["x"]]
  y <- out[["y"]]

  if (is.null(y)) {
    if (type == "delta") {
      insight::format_error("For Glass' Delta, please provide data from two samples.")
    }
    y <- 0
    paired <- TRUE
  }

  # Compute index
  if (paired) {
    d <- mean(x - y)
    n <- length(x)
    s <- stats::sd(x - y)

    hn <- 1 / n
    se <- s / sqrt(n)
    df <- n - 1

    pooled_sd <- NULL
  } else {
    d <- mean(x) - mean(y)

    s1 <- stats::sd(x)
    s2 <- stats::sd(y)

    n1 <- length(x)
    n2 <- length(y)
    n <- n1 + n2

    if (type %in% c("d", "g")) {
      if (pooled_sd) {
        s <- suppressWarnings(sd_pooled(x, y))
        hn <- (1 / n1 + 1 / n2)
        se <- s * sqrt(1 / n1 + 1 / n2)
        df <- n - 2
      } else {
        s <- sqrt((s1^2 + s2^2) / 2)
        hn <- (2 * (n2 * s1^2 + n1 * s2^2)) / (n1 * n2 * (s1^2 + s2^2))
        se1 <- sqrt(s1^2 / n1)
        se2 <- sqrt(s2^2 / n2)
        se <- sqrt(se1^2 + se2^2)
        df <- se^4 / (se1^4 / (n1 - 1) + se2^4 / (n2 - 1))
      }
    } else if (type == "delta") {
      pooled_sd <- NULL

      s <- s2
      hn <- 1 / n2 + s1^2 / (n1 * s2^2)
      se <- (s2 * sqrt(1 / n2 + s1^2 / (n1 * s2^2)))
      df <- n2 - 1
    }
  }

  out <- data.frame(d = (d - mu) / s)
  types <- c("d" = "Cohens_d", "g" = "Hedges_g", "delta" = "Glass_delta")
  colnames(out) <- types[type]

  if (.test_ci(ci)) {
    # Add cis
    out$CI <- ci
    ci.level <- .adjust_ci(ci, alternative)

    t <- (d - mu) / se
    ts <- .get_ncp_t(t, df, ci.level)

    out$CI_low <- ts[1] * sqrt(hn)
    out$CI_high <- ts[2] * sqrt(hn)
    ci_method <- list(method = "ncp", distribution = "t")
    out <- .limit_ci(out, alternative, -Inf, Inf)
  } else {
    ci_method <- alternative <- NULL
  }


  if (type == "g") {
    J <- exp(lgamma(df / 2) - log(sqrt(df / 2)) - lgamma((df - 1) / 2)) # exact method

    out[, colnames(out) %in% c("Hedges_g", "CI_low", "CI_high")] <-
      out[, colnames(out) %in% c("Hedges_g", "CI_low", "CI_high")] * J
  }

  class(out) <- c("effectsize_difference", "effectsize_table", "see_effectsize_table", class(out))
  .someattributes(out) <- .nlist(
    paired, pooled_sd, mu, ci, ci_method, alternative,
    approximate = FALSE
  )
  return(out)
}