1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
#' Convert Between *d*, *r*, and Odds Ratio
#'
#' Enables a conversion between different indices of effect size, such as
#' standardized difference (Cohen's d), (point-biserial) correlation r or (log) odds ratios.
#'
#' @param d Standardized difference value (Cohen's d).
#' @param r Correlation coefficient r.
#' @param n1,n2 Group sample sizes. If either is missing, groups are assumed to be of equal size.
#' @param OR *Odds ratio* values in vector or data frame.
#' @param log Take in or output the log of the ratio (such as in logistic models).
#' @param ... Arguments passed to or from other methods.
#'
#' @family convert between effect sizes
#' @seealso [cohens_d()]
#'
#' @examples
#' r_to_d(0.5)
#' d_to_oddsratio(1.154701)
#' oddsratio_to_r(8.120534)
#'
#' d_to_r(1)
#' r_to_oddsratio(0.4472136, log = TRUE)
#' oddsratio_to_d(1.813799, log = TRUE)
#'
#' @return Converted index.
#'
#' @details
#' Conversions between *d* and *OR* is done through these formulae:
#' - \eqn{d = \frac{\log(OR)\times\sqrt{3}}{\pi}}{d = log(OR) * sqrt(3) / pi}
#' - \eqn{log(OR) = d * \frac{\pi}{\sqrt(3)}}{log(OR) = d * pi / sqrt(3)}
#'
#' Converting between *d* and *r* is done through these formulae:
#' - \eqn{d = \frac{\sqrt{h} * r}{\sqrt{1 - r^2}}}{d = sqrt(h) * r / sqrt(1 - r^2)}
#' - \eqn{r = \frac{d}{\sqrt{d^2 + h}}}{r = d / sqrt(d^2 + h)}
#'
#' Where \eqn{h = \frac{n_1 + n_2 - 2}{n_1} + \frac{n_1 + n_2 - 2}{n_2}}{h = (n1 + n2 - 2) / n1 + (n1 + n2 - 2) / n2}.
#' When groups are of equal size, *h* reduces to approximately 4. The resulting
#' *r* is also called the binomial effect size display (BESD; Rosenthal et al.,
#' 1982).
#'
#' @references
#' - Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R.
#' (2009). Converting among effect sizes. Introduction to meta-analysis, 45-49.
#'
#' - Jacobs, P., & Viechtbauer, W. (2017). Estimation of the biserial
#' correlation and its sampling variance for use in meta‐analysis. Research
#' synthesis methods, 8(2), 161-180. \doi{10.1002/jrsm.1218}
#'
#' - Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of
#' magnitude of experimental effect. Journal of educational psychology, 74(2), 166.
#'
#' - Sánchez-Meca, J., Marín-Martínez, F., & Chacón-Moscoso, S. (2003).
#' Effect-size indices for dichotomized outcomes in meta-analysis. Psychological
#' methods, 8(4), 448.
#'
#' @export
#' @aliases convert_d_to_r
d_to_r <- function(d, n1, n2, ...) {
h <- .get_rd_h(n1, n2)
d / (sqrt(d^2 + h))
}
#' @export
convert_d_to_r <- d_to_r
#' @rdname d_to_r
#' @aliases convert_r_to_d
#' @export
r_to_d <- function(r, n1, n2, ...) {
h <- .get_rd_h(n1, n2)
sqrt(h) * r / sqrt(1 - r^2)
}
#' @export
convert_r_to_d <- r_to_d
# OR - d ----------------------------------------------------------------
#' @rdname d_to_r
#' @aliases convert_oddsratio_to_d
#' @export
oddsratio_to_d <- function(OR, log = FALSE, ...) {
if (log) {
log_OR <- OR
} else {
log_OR <- log(OR)
}
log_OR * (sqrt(3) / pi)
}
#' @export
convert_oddsratio_to_d <- oddsratio_to_d
#' @rdname d_to_r
#' @aliases convert_logoddsratio_to_d
#' @export
logoddsratio_to_d <- function(OR, log = TRUE, ...) {
oddsratio_to_d(OR, log = log, ...)
}
#' @export
convert_logoddsratio_to_d <- logoddsratio_to_d
#' @rdname d_to_r
#' @aliases convert_d_to_oddsratio
#' @export
d_to_oddsratio <- function(d, log = FALSE, ...) {
log_OR <- d * pi / sqrt(3)
if (log) {
log_OR
} else {
exp(log_OR)
}
}
#' @export
convert_d_to_oddsratio <- d_to_oddsratio
# OR - r ----------------------------------------------------------------
#' @rdname d_to_r
#' @aliases convert_oddsratio_to_r
#' @export
oddsratio_to_r <- function(OR, n1, n2, log = FALSE, ...) {
d_to_r(oddsratio_to_d(OR, log = log), n1, n2)
}
#' @export
convert_oddsratio_to_r <- oddsratio_to_r
#' @rdname d_to_r
#' @aliases convert_logoddsratio_to_r
#' @export
logoddsratio_to_r <- function(OR, log = TRUE, ...) {
oddsratio_to_r(OR, log = log, ...)
}
#' @export
convert_logoddsratio_to_r <- logoddsratio_to_r
#' @rdname d_to_r
#' @aliases convert_r_to_oddsratio
#' @export
r_to_oddsratio <- function(r, n1, n2, log = FALSE, ...) {
d_to_oddsratio(r_to_d(r), log = log, n1, n2)
}
#' @export
convert_r_to_oddsratio <- r_to_oddsratio
# Utils -------------------------------------------------------------------
#' @keywords internal
.get_rd_h <- function(n1, n2) {
if (missing(n1) || missing(n2)) {
h <- 4
} else {
if (missing(n1)) n1 <- n2
if (missing(n2)) n2 <- n1
m <- n1 + n2 - 2
h <- m / n1 + m / n2
}
h
}
|