File: convert_stat_chisq.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (381 lines) | stat: -rw-r--r-- 11,365 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#' Convert \eqn{\chi^2} to \eqn{\phi} and Other Correlation-like Effect Sizes
#'
#' Convert between \eqn{\chi^2} (chi-square), \eqn{\phi} (phi), Cramer's
#' \eqn{V}, Tschuprow's \eqn{T}, Cohen's \eqn{w},
#' \ifelse{latex}{\eqn{Fei}}{פ (Fei)} and Pearson's \eqn{C} for contingency
#' tables or goodness of fit.
#'
#' @name chisq_to_phi
#' @rdname convert_chisq
#'
#' @param chisq The \eqn{\chi^2} (chi-square) statistic.
#' @param n Total sample size.
#' @param nrow,ncol The number of rows/columns in the contingency table.
#' @param ci Confidence Interval (CI) level
#' @param alternative a character string specifying the alternative hypothesis;
#'   Controls the type of CI returned: `"greater"` (default) or `"less"`
#'   (one-sided CI), or `"two.sided"` (default, two-sided CI). Partial matching
#'   is allowed (e.g., `"g"`, `"l"`, `"two"`...). See *One-Sided CIs* in
#'   [effectsize_CIs].
#' @param adjust Should the effect size be bias-corrected? Defaults to `TRUE`;
#'   Advisable for small samples and large tables.
#' @param ... Arguments passed to or from other methods.
#'
#' @return A data frame with the effect size(s), and confidence interval(s). See
#'   [cramers_v()].
#'
#' @details These functions use the following formulas:
#'
#' \deqn{\phi = w = \sqrt{\chi^2 / n}}{phi = w = sqrt(\frac{\chi^2}{n})}
#' \ifelse{latex}{
#' \deqn{\textrm{Cramer's } V = \phi / \sqrt{\min(\textit{nrow}, \textit{ncol}) - 1}}
#' }{
#' \deqn{\textrm{Cramer's } V = \phi / \sqrt{\min(\textit{nrow}, \textit{ncol}) - 1}}{Cramer's V = \phi / sqrt(min(nrow, ncol) - 1)}
#' }
#'
#' \ifelse{latex}{
#' \deqn{\textrm{Tschuprow's } T = \phi / \sqrt[4]{(\textit{nrow} - 1) \times (\textit{ncol} - 1)}}
#' }{
#' \deqn{\textrm{Tschuprow's } T = \phi / \sqrt[4]{(\textit{nrow} - 1) \times (\textit{ncol} - 1)}}{Tschuprow's T = \phi / sqrt(sqrt((nrow-1) * (ncol-1)))}
#' }
#'
#' \ifelse{latex}{
#' \deqn{\textit{Fei} = \phi / \sqrt{[1 / \min(p_E)] - 1}}
#' }{
#' \deqn{פ = \phi / \sqrt{[1 / \min(p_E)] - 1}}{פ = w / sqrt(1 / min(p_E) - 1))}
#' }
#' Where \eqn{p_E} are the expected probabilities.
#'
#' \deqn{\textrm{Pearson's } C = \sqrt{\chi^2 / (\chi^2 + n)}}{Pearson's C = sqrt(\chi^2 / (\chi^2 + n))}
#'
#' For bias-adjusted versions of \eqn{\phi} and \eqn{V}, see [Bergsma, 2013](https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V#Bias_correction).
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @family effect size from test statistic
#' @seealso [phi()] for more details.
#'
#' @examples
#'
#' data("Music_preferences")
#'
#' # chisq.test(Music_preferences)
#' #>
#' #> 	Pearson's Chi-squared test
#' #>
#' #> data:  Music_preferences
#' #> X-squared = 95.508, df = 6, p-value < 2.2e-16
#' #>
#'
#' chisq_to_cohens_w(95.508,
#'   n = sum(Music_preferences),
#'   nrow = nrow(Music_preferences),
#'   ncol = ncol(Music_preferences)
#' )
#'
#'
#'
#'
#' data("Smoking_FASD")
#'
#' # chisq.test(Smoking_FASD, p = c(0.015, 0.010, 0.975))
#' #>
#' #> 	Chi-squared test for given probabilities
#' #>
#' #> data:  Smoking_FASD
#' #> X-squared = 7.8521, df = 2, p-value = 0.01972
#'
#' chisq_to_fei(
#'   7.8521,
#'   n = sum(Smoking_FASD),
#'   nrow = 1,
#'   ncol = 3,
#'   p = c(0.015, 0.010, 0.975)
#' )
#'
#' @references
#' - Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and
#' calculation of confidence intervals that are based on central and noncentral
#' distributions. Educational and Psychological Measurement, 61(4), 532-574.
#'
#' - Bergsma, W. (2013). A bias-correction for Cramer's V and Tschuprow's T.
#' Journal of the Korean Statistical Society, 42(3), 323-328.
#'
#' - Johnston, J. E., Berry, K. J., & Mielke Jr, P. W. (2006). Measures of
#' effect size for chi-squared and likelihood-ratio goodness-of-fit tests.
#' Perceptual and motor skills, 103(2), 412-414.
#'
#' - Rosenberg, M. S. (2010). A generalized formula for converting chi-square
#' tests to effect sizes for meta-analysis. PloS one, 5(4), e10059.
#'
#' @export
chisq_to_phi <- function(chisq, n, nrow = 2, ncol = 2,
                         adjust = TRUE,
                         ci = 0.95, alternative = "greater",
                         ...) {
  if ((!missing(nrow) && nrow != 2) || (!missing(ncol) && ncol != 2)) {
    insight::format_error("Phi is not appropriate for non-2x2 tables.")
  }

  res <- .chisq_to_generic_phi(chisq, n, nrow, ncol,
    ci = ci, alternative = alternative,
    ...
  )

  if (adjust) {
    res <- .adjust_phi(res, n, nrow, ncol)
  }

  if ("CI" %in% colnames(res)) {
    if (attr(res, "alternative") == "greater") {
      res$CI_high <- 1
    } else {
      res$CI_high <- pmin(res$CI_high, 1)
    }
  }

  return(res)
}


#' @rdname convert_chisq
#' @export
chisq_to_cohens_w <- function(chisq, n, nrow, ncol, p,
                              ci = 0.95, alternative = "greater",
                              ...) {
  res <- .chisq_to_generic_phi(chisq, n, nrow, ncol,
    ci = ci, alternative = alternative,
    ...
  )
  colnames(res)[1] <- "Cohens_w"

  if ("CI" %in% colnames(res)) {
    if (ncol == 1 || nrow == 1) {
      if (missing(p)) {
        max_possible <- Inf # really is chisqMax, but can't compute it without p
      } else {
        q <- min(p / sum(p))
        max_possible <- sqrt((1 - q) / q)
      }
    } else {
      max_possible <- sqrt((pmin(ncol, nrow) - 1))
    }

    if (attr(res, "alternative") == "greater") {
      res$CI_high <- max_possible
    } else {
      res$CI_high <- pmin(res$CI_high, max_possible)
    }
  }

  return(res)
}

#' @rdname convert_chisq
#' @export
chisq_to_cramers_v <- function(chisq, n, nrow, ncol,
                               adjust = TRUE,
                               ci = 0.95, alternative = "greater",
                               ...) {
  if (nrow == 1 || ncol == 1) {
    insight::format_error("Cramer's V not applicable to goodness-of-fit tests.")
  }

  res <- .chisq_to_generic_phi(chisq, n, nrow, ncol,
    ci = ci, alternative = alternative,
    ...
  )
  # Adjust
  if (adjust) {
    k <- nrow - ((nrow - 1)^2) / (n - 1)
    l <- ncol - ((ncol - 1)^2) / (n - 1)

    res <- .adjust_phi(res, n, nrow, ncol)
  } else {
    k <- nrow
    l <- ncol
  }

  div <- sqrt((pmin(k, l) - 1))

  # Convert
  res[grepl("^(phi|CI_)", colnames(res))] <-
    lapply(res[grepl("^(phi|CI_)", colnames(res))], "/", y = div)
  colnames(res)[1] <- gsub("phi", "Cramers_v", colnames(res)[1], fixed = TRUE)

  if ("CI" %in% colnames(res)) {
    if (attr(res, "alternative") == "greater") {
      res$CI_high <- 1
    } else {
      res$CI_high <- pmin(res$CI_high, 1)
    }
  }
  return(res)
}

#' @rdname convert_chisq
#' @export
chisq_to_tschuprows_t <- function(chisq, n, nrow, ncol,
                                  ci = 0.95, alternative = "greater",
                                  ...) {
  if (nrow == 1 || ncol == 1) {
    insight::format_error("Tschuprow's T not applicable to goodness-of-fit tests.")
  }

  res <- .chisq_to_generic_phi(chisq, n, nrow, ncol,
    ci = ci, alternative = alternative,
    ...
  )

  # Convert
  div <- sqrt(sqrt((nrow - 1) * (ncol - 1)))
  res[grepl("^(phi|CI_)", colnames(res))] <-
    lapply(res[grepl("^(phi|CI_)", colnames(res))], "/", y = div)
  colnames(res)[1] <- "Tschuprows_t"

  if ("CI" %in% colnames(res)) {
    if (attr(res, "alternative") == "greater") {
      res$CI_high <- 1
    } else {
      res$CI_high <- pmin(res$CI_high, 1)
    }
  }
  return(res)
}


#' @rdname convert_chisq
#' @export
#' @param p Vector of expected values. See [stats::chisq.test()].
chisq_to_fei <- function(chisq, n, nrow, ncol, p,
                         ci = 0.95, alternative = "greater",
                         ...) {
  if (!missing(nrow) && !missing(ncol)) {
    if (!1 %in% c(nrow, ncol)) {
      insight::format_error("Fei is only applicable to goodness of fit tests.")
    }

    if (!length(p) %in% c(ncol, nrow)) {
      insight::format_error("Length of `p` must match number of rows/columns.")
    }
  }

  p <- p / sum(p)
  q <- min(p)

  N <- n * (1 - q) / q

  res <- .chisq_to_generic_phi(chisq, N, nrow, ncol,
    ci = ci, alternative = alternative,
    ...
  )
  colnames(res)[1] <- "Fei"

  if ("CI" %in% colnames(res)) {
    if (attr(res, "alternative") == "greater") {
      res$CI_high <- 1
    } else {
      res$CI_high <- pmin(res$CI_high, 1)
    }
  }

  is_uniform <- insight::n_unique(p) == 1L
  if (!is_uniform || max(ncol, nrow) > 2) {
    attr(res, "table_footer") <-
      sprintf("Adjusted for %suniform expected probabilities.", if (is_uniform) "non-" else "")
  }
  return(res)
}

#' @rdname convert_chisq
#' @export
chisq_to_pearsons_c <- function(chisq, n, nrow, ncol,
                                ci = 0.95, alternative = "greater",
                                ...) {
  res <- .chisq_to_generic_phi(chisq, n, nrow, ncol,
    ci = ci, alternative = alternative,
    ...
  )

  to_convert <- grepl("^(phi|CI_)", colnames(res))
  res[to_convert] <- lapply(res[to_convert], function(phi) sqrt(1 / (1 / phi^2 + 1)))
  colnames(res)[1] <- "Pearsons_c"

  if ("CI" %in% colnames(res)) {
    res <- .limit_ci(res, alternative, 0, 1)
  }

  return(res)
}


# Reverse -----------------------------------------------------------------

#' @rdname convert_chisq
#' @param phi The \eqn{\phi} (phi) statistic.
#' @export
phi_to_chisq <- function(phi, n, ...) {
  n * (phi^2)
}


# Utils  ------------------------------------------------------------------

#' @keywords internal
.chisq_to_generic_phi <- function(chisq, den, nrow, ncol,
                                  ci = NULL, alternative = "greater",
                                  ...) {
  alternative <- .match.alt(alternative, FALSE)

  if (ci_numeric <- .test_ci(ci)) {
    is_goodness <- ncol == 1 || nrow == 1

    if (is_goodness) {
      df <- pmax(nrow - 1, ncol - 1)
    } else {
      df <- (nrow - 1) * (ncol - 1)
    }
  }

  res <- data.frame(phi = sqrt(chisq / den))

  if (ci_numeric) {
    res$CI <- ci
    ci.level <- .adjust_ci(ci, alternative)

    chisqs <- t(mapply(
      .get_ncp_chi,
      chisq, df, ci.level
    ))

    res$CI_low <- .chisq_to_generic_phi(chisqs[, 1], den, nrow, ncol)[[1]]
    res$CI_high <- .chisq_to_generic_phi(chisqs[, 2], den, nrow, ncol)[[1]]

    ci_method <- list(method = "ncp", distribution = "chisq")
    res <- .limit_ci(res, alternative, 0, 1)
  } else {
    ci_method <- alternative <- NULL
  }

  class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
  attr(res, "ci") <- ci
  attr(res, "ci_method") <- ci_method
  attr(res, "alternative") <- alternative
  return(res)
}

#' @keywords internal
.adjust_phi <- function(res, n, nrow, ncol) {
  to_convert <- grepl("^(phi|CI_)", colnames(res))

  res[to_convert] <- lapply(res[to_convert], function(phi) {
    df <- (nrow - 1) * (ncol - 1)
    E <- df / (n - 1)
    sqrt(pmax(0, phi^2 - E))
  })

  colnames(res)[1] <- "phi_adjusted"

  res
}