1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#' Convert *F* and *t* Statistics to **partial**-\eqn{\eta^2} and Other ANOVA Effect Sizes
#'
#' These functions are convenience functions to convert F and t test statistics
#' to **partial** Eta- (\eqn{\eta}), Omega- (\eqn{\omega}) Epsilon-
#' (\eqn{\epsilon}) squared (an alias for the adjusted Eta squared) and Cohen's
#' f. These are useful in cases where the various Sum of Squares and Mean
#' Squares are not easily available or their computation is not straightforward
#' (e.g., in liner mixed models, contrasts, etc.). For test statistics derived
#' from `lm` and `aov` models, these functions give exact results. For all other
#' cases, they return close approximations.
#' \cr
#' See [Effect Size from Test Statistics vignette.](https://easystats.github.io/effectsize/articles/from_test_statistics.html)
#'
#' @param t,f The t or the F statistics.
#' @param df,df_error Degrees of freedom of numerator or of the error estimate
#' (i.e., the residuals).
#' @inheritParams chisq_to_phi
#' @param ... Arguments passed to or from other methods.
#'
#' @return A data frame with the effect size(s) between 0-1 (`Eta2_partial`,
#' `Epsilon2_partial`, `Omega2_partial`, `Cohens_f_partial` or
#' `Cohens_f2_partial`), and their CIs (`CI_low` and `CI_high`).
#'
#' @details These functions use the following formulae:
#' \cr
#' \deqn{\eta_p^2 = \frac{F \times df_{num}}{F \times df_{num} + df_{den}}}{\eta^2_p = F * df1 / (F * df1 + df2)}
#' \cr
#' \deqn{\epsilon_p^2 = \frac{(F - 1) \times df_{num}}{F \times df_{num} + df_{den}}}{\epsilon^2_p = (F - 1) * df1 / (F * df1 + df2)}
#' \cr
#' \deqn{\omega_p^2 = \frac{(F - 1) \times df_{num}}{F \times df_{num} + df_{den} + 1}}{\omega^2_p=(F - 1) * df1 / (F * df1 + df2 + 1)}
#' \cr
#' \deqn{f_p = \sqrt{\frac{\eta_p^2}{1-\eta_p^2}}}{f = \eta^2 / (1 - \eta^2)}
#' \cr\cr
#' For *t*, the conversion is based on the equality of \eqn{t^2 = F} when \eqn{df_{num}=1}{df1 = 1}.
#'
#' ## Choosing an Un-Biased Estimate
#' Both Omega and Epsilon are unbiased estimators of the population Eta. But
#' which to choose? Though Omega is the more popular choice, it should be noted
#' that:
#' 1. The formula given above for Omega is only an approximation for complex
#' designs.
#' 2. Epsilon has been found to be less biased (Carroll & Nordholm, 1975).
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @note Adjusted (partial) Eta-squared is an alias for (partial) Epsilon-squared.
#'
#' @seealso [eta_squared()] for more details.
#' @family effect size from test statistic
#'
#' @examples
#' mod <- aov(mpg ~ factor(cyl) * factor(am), mtcars)
#' anova(mod)
#' (etas <- F_to_eta2(
#' f = c(44.85, 3.99, 1.38),
#' df = c(2, 1, 2),
#' df_error = 26
#' ))
#'
#' if (require(see)) plot(etas)
#'
#' # Compare to:
#' eta_squared(mod)
#'
#' @examplesIf require(lmerTest) && interactive()
#' fit <- lmerTest::lmer(extra ~ group + (1 | ID), sleep)
#' # anova(fit)
#' # #> Type III Analysis of Variance Table with Satterthwaite's method
#' # #> Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
#' # #> group 12.482 12.482 1 9 16.501 0.002833 **
#' # #> ---
#' # #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#'
#' F_to_eta2(16.501, 1, 9)
#' F_to_omega2(16.501, 1, 9)
#' F_to_epsilon2(16.501, 1, 9)
#' F_to_f(16.501, 1, 9)
#'
#' @examplesIf require(emmeans)
#' ## Use with emmeans based contrasts
#' ## --------------------------------
#' warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
#'
#' jt <- emmeans::joint_tests(warp.lm, by = "wool")
#' F_to_eta2(jt$F.ratio, jt$df1, jt$df2)
#'
#' @references
#' - Albers, C., & Lakens, D. (2018). When power analyses based on pilot data
#' are biased: Inaccurate effect size estimators and follow-up bias. Journal of
#' experimental social psychology, 74, 187-195. \doi{10.31234/osf.io/b7z4q}
#'
#' - Carroll, R. M., & Nordholm, L. A. (1975). Sampling Characteristics of
#' Kelley's epsilon and Hays' omega. Educational and Psychological Measurement,
#' 35(3), 541-554.
#'
#' - Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and
#' calculation of confidence intervals that are based on central and noncentral
#' distributions. Educational and Psychological Measurement, 61(4), 532-574.
#'
#' - Friedman, H. (1982). Simplified determinations of statistical power,
#' magnitude of effect and research sample sizes. Educational and Psychological
#' Measurement, 42(2), 521-526. \doi{10.1177/001316448204200214}
#'
#' - Mordkoff, J. T. (2019). A Simple Method for Removing Bias From a Popular
#' Measure of Standardized Effect Size: Adjusted Partial Eta Squared. Advances
#' in Methods and Practices in Psychological Science, 2(3), 228-232.
#' \doi{10.1177/2515245919855053}
#'
#' - Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J.
#' (2016). The fallacy of placing confidence in confidence intervals.
#' Psychonomic bulletin & review, 23(1), 103-123.
#'
#' - Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals
#' and tests of close fit in the analysis of variance and contrast analysis.
#' Psychological Methods, 9, 164-182.
#'
#' @export
F_to_eta2 <- function(f, df, df_error,
ci = 0.95, alternative = "greater",
...) {
.F_to_pve(f, df, df_error,
es = "eta2",
ci = ci, alternative = alternative,
...
)
}
#' @rdname F_to_eta2
#' @export
t_to_eta2 <- function(t, df_error,
ci = 0.95, alternative = "greater",
...) {
F_to_eta2(t^2, 1, df_error,
ci = ci, alternative = alternative,
...
)
}
#' @rdname F_to_eta2
#' @export
F_to_epsilon2 <- function(f, df, df_error,
ci = 0.95, alternative = "greater",
...) {
.F_to_pve(f, df, df_error,
es = "epsilon2",
ci = ci, alternative = alternative,
...
)
}
#' @rdname F_to_eta2
#' @export
t_to_epsilon2 <- function(t, df_error,
ci = 0.95, alternative = "greater",
...) {
F_to_epsilon2(t^2, 1, df_error,
ci = ci, alternative = alternative,
...
)
}
#' @rdname F_to_eta2
#' @export
F_to_eta2_adj <- F_to_epsilon2
#' @rdname F_to_eta2
#' @export
t_to_eta2_adj <- t_to_epsilon2
#' @rdname F_to_eta2
#' @export
F_to_omega2 <- function(f, df, df_error,
ci = 0.95, alternative = "greater",
...) {
.F_to_pve(f, df, df_error,
es = "omega2",
ci = ci, alternative = alternative,
...
)
}
#' @rdname F_to_eta2
#' @export
t_to_omega2 <- function(t, df_error,
ci = 0.95, alternative = "greater",
...) {
F_to_omega2(t^2, 1, df_error,
ci = ci, alternative = alternative,
...
)
}
#' @rdname F_to_eta2
#' @param squared Return Cohen's *f* or Cohen's *f*-squared?
#' @export
F_to_f <- function(f, df, df_error,
squared = FALSE,
ci = 0.95, alternative = "greater",
...) {
res_eta <- F_to_eta2(f, df, df_error,
ci = ci, alternative = alternative,
...
)
res <- data.frame(
Cohens_f2_partial =
res_eta$Eta2_partial / (1 - res_eta$Eta2_partial)
)
ci_method <- NULL
if (!is.null(ci)) {
res$CI <- res_eta$CI
res$CI_low <- res_eta$CI_low / (1 - res_eta$CI_low)
res$CI_high <- res_eta$CI_high / (1 - res_eta$CI_high)
ci_method <- list(method = "ncp", distribution = "F")
}
if (!squared) {
i <- colnames(res) %in% c("Cohens_f2_partial", "CI_low", "CI_high")
res[i] <- sqrt(res[i])
colnames(res)[colnames(res) == "Cohens_f2_partial"] <- "Cohens_f_partial"
}
class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
attr(res, "ci") <- ci
attr(res, "ci_method") <- ci_method
attr(res, "alternative") <- if (!is.null(ci)) alternative
return(res)
}
#' @rdname F_to_eta2
#' @export
t_to_f <- function(t, df_error,
squared = FALSE,
ci = 0.95, alternative = "greater",
...) {
F_to_f(t^2, 1, df_error,
squared = squared,
ci = ci, alternative = alternative, ...
)
}
#' @rdname F_to_eta2
#' @export
F_to_f2 <- function(f, df, df_error,
squared = TRUE,
ci = 0.95, alternative = "greater",
...) {
F_to_f(f, df, df_error,
squared = squared,
ci = ci, alternative = alternative, ...
)
}
#' @rdname F_to_eta2
#' @export
t_to_f2 <- function(t, df_error,
squared = TRUE,
ci = 0.95, alternative = "greater",
...) {
F_to_f(t^2, 1, df_error,
squared = squared,
ci = ci, alternative = alternative,
...
)
}
#' @keywords internal
.F_to_pve <- function(f, df, df_error,
es = "eta2",
ci = 0.95, alternative = "greater",
verbose = TRUE, ...) {
alternative <- .match.alt(alternative, FALSE)
res <- switch(tolower(es),
eta2 = data.frame(Eta2_partial = (f * df) / (f * df + df_error)),
epsilon2 = data.frame(Epsilon2_partial = pmax(0, ((f - 1) * df) / (f * df + df_error))),
omega2 = data.frame(Omega2_partial = pmax(0, ((f - 1) * df) / (f * df + df_error + 1))),
insight::format_error("'es' must be 'eta2', 'epsilon2', or 'omega2'.")
)
if (.test_ci(ci)) {
res$CI <- ci
ci.level <- .adjust_ci(ci, alternative)
# based on MBESS::ci.R2
f <- pmax(0, (res[[1]] / df) / ((1 - res[[1]]) / df_error))
fs <- t(mapply(.get_ncp_F, f, df, df_error, ci.level)) / df
if (isTRUE(verbose) && anyNA(fs)) {
insight::format_warning("Some CIs could not be estimated due to non-finite F, df, or df_error values.")
}
# This really is a generic F_to_R2
res$CI_low <- F_to_eta2(fs[, 1], df, df_error, ci = NULL)[[1]]
res$CI_high <- F_to_eta2(fs[, 2], df, df_error, ci = NULL)[[1]]
ci_method <- list(method = "ncp", distribution = "F")
res <- .limit_ci(res, alternative, 0, 1)
} else {
ci_method <- alternative <- NULL
}
class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
attr(res, "ci") <- ci
attr(res, "ci_method") <- ci_method
attr(res, "alternative") <- alternative
return(res)
}
|