File: convert_stat_to_r.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (183 lines) | stat: -rw-r--r-- 6,224 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# t -----------------------------------------------------------------------

#' Convert *t*, *z*, and *F* to Cohen's *d* or **partial**-*r*
#'
#' These functions are convenience functions to convert t, z and F test
#' statistics to Cohen's d and **partial** r. These are useful in cases where
#' the data required to compute these are not easily available or their
#' computation is not straightforward (e.g., in liner mixed models, contrasts,
#' etc.).
#' \cr
#' See [Effect Size from Test Statistics vignette.](https://easystats.github.io/effectsize/articles/from_test_statistics.html)
#'
#' @param t,f,z The t, the F or the z statistics.
#' @param df,df_error Degrees of freedom of numerator or of the error estimate
#'   (i.e., the residuals).
#' @param n The number of observations (the sample size).
#' @param paired Should the estimate account for the t-value being testing the
#'   difference between dependent means?
#' @inheritParams cohens_d
#' @param ... Arguments passed to or from other methods.
#'
#'
#' @return A data frame with the effect size(s)(`r` or `d`), and their CIs
#'   (`CI_low` and `CI_high`).
#'
#'
#' @details These functions use the following formulae to approximate *r* and *d*:
#' \cr\cr
#' \deqn{r_{partial} = t / \sqrt{t^2 + df_{error}}}
#' \cr\cr
#' \deqn{r_{partial} = z / \sqrt{z^2 + N}}
#' \cr\cr
#' \deqn{d = 2 * t / \sqrt{df_{error}}}
#' \cr\cr
#' \deqn{d_z = t / \sqrt{df_{error}}}
#' \cr\cr
#' \deqn{d = 2 * z / \sqrt{N}}
#'
#' The resulting `d` effect size is an *approximation* to Cohen's *d*, and
#' assumes two equal group sizes. When possible, it is advised to directly
#' estimate Cohen's *d*, with [cohens_d()], `emmeans::eff_size()`, or similar
#' functions.
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @family effect size from test statistic
#' @seealso [cohens_d()]
#'
#' @examples
#' ## t Tests
#' res <- t.test(1:10, y = c(7:20), var.equal = TRUE)
#' t_to_d(t = res$statistic, res$parameter)
#' t_to_r(t = res$statistic, res$parameter)
#' t_to_r(t = res$statistic, res$parameter, alternative = "less")
#'
#' res <- with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))
#' t_to_d(t = res$statistic, res$parameter, paired = TRUE)
#' t_to_r(t = res$statistic, res$parameter)
#' t_to_r(t = res$statistic, res$parameter, alternative = "greater")
#'
#' @examplesIf require(correlation)
#' ## Linear Regression
#' model <- lm(rating ~ complaints + critical, data = attitude)
#' (param_tab <- parameters::model_parameters(model))
#'
#' (rs <- t_to_r(param_tab$t[2:3], param_tab$df_error[2:3]))
#'
#' # How does this compare to actual partial correlations?
#' correlation::correlation(attitude,
#'   select = "rating",
#'   select2 = c("complaints", "critical"),
#'   partial = TRUE
#' )
#'
#' @references
#' - Friedman, H. (1982). Simplified determinations of statistical power,
#' magnitude of effect and research sample sizes. Educational and Psychological
#' Measurement, 42(2), 521-526. \doi{10.1177/001316448204200214}
#'
#' - Wolf, F. M. (1986). Meta-analysis: Quantitative methods for research
#' synthesis (Vol. 59). Sage.
#'
#' - Rosenthal, R. (1994) Parametric measures of effect size. In H. Cooper and
#' L.V. Hedges (Eds.). The handbook of research synthesis. New York: Russell
#' Sage Foundation.
#'
#' - Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals
#' and tests of close fit in the analysis of variance and contrast analysis.
#' Psychological Methods, 9, 164-182.
#'
#' - Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and
#' calculation of confidence intervals that are based on central and noncentral
#' distributions. Educational and Psychological Measurement, 61(4), 532-574.
#'
#' @export
t_to_r <- function(t, df_error,
                   ci = 0.95, alternative = "two.sided",
                   ...) {
  alternative <- .match.alt(alternative)

  res <- data.frame(r = t / sqrt(t^2 + df_error))

  if (.test_ci(ci)) {
    res$CI <- ci
    ci.level <- .adjust_ci(ci, alternative)

    ts <- t(mapply(
      .get_ncp_t,
      t, df_error, ci.level
    ))

    res$CI_low <- ts[, 1] / sqrt(ts[, 1]^2 + df_error)
    res$CI_high <- ts[, 2] / sqrt(ts[, 2]^2 + df_error)

    ci_method <- list(method = "ncp", distribution = "t")
    res <- .limit_ci(res, alternative, -1, 1)
  } else {
    ci_method <- alternative <- NULL
  }

  class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
  attr(res, "ci") <- ci
  attr(res, "ci_method") <- ci_method
  attr(res, "alternative") <- alternative
  return(res)
}

# z -----------------------------------------------------------------------



#' @rdname t_to_r
#' @importFrom stats qnorm
#' @export
z_to_r <- function(z, n,
                   ci = 0.95, alternative = "two.sided",
                   ...) {
  alternative <- .match.alt(alternative)

  res <- data.frame(r = z / sqrt(z^2 + n))

  if (.test_ci(ci)) {
    res$CI <- ci
    ci.level <- .adjust_ci(ci, alternative)

    alpha <- 1 - ci.level
    probs <- c(alpha / 2, 1 - alpha / 2)

    qs <- stats::qnorm(probs)
    zs <- cbind(qs[1] + z, qs[2] + z)

    res$CI_low <- zs[, 1] / sqrt(zs[, 1]^2 + n)
    res$CI_high <- zs[, 2] / sqrt(zs[, 2]^2 + n)

    ci_method <- list(method = "normal")
    res <- .limit_ci(res, alternative, -1, 1)
  } else {
    ci_method <- alternative <- NULL
  }

  class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
  attr(res, "ci") <- ci
  attr(res, "ci_method") <- ci_method
  attr(res, "alternative") <- alternative
  return(res)
}

# F -----------------------------------------------------------------------

#' @rdname t_to_r
#' @export
F_to_r <- function(f, df, df_error,
                   ci = 0.95, alternative = "two.sided",
                   ...) {
  if (df > 1) {
    insight::format_error("Cannot convert F with more than 1 df to r.")
  }
  t_to_r(sqrt(f), df_error,
    ci = ci, alternative = alternative,
    ...
  )
}