1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
# Data frames -------------------------------------------------------------
#' Workers' Salary and Other Information
#'
#' A sample (simulated) dataset, used in tests and some examples.
#'
#' @docType data
#'
#' @name hardlyworking
#'
#' @keywords data
#'
#' @format A data frame with 500 rows and 5 variables:
#' \describe{
#' \item{salary}{Salary, in Shmekels}
#' \item{xtra_hours}{Number of overtime hours (on average, per week)}
#' \item{n_comps}{Number of compliments given to the boss (observed over the last week)}
#' \item{age}{Age in years}
#' \item{seniority}{How many years with the company}
#' \item{is_senior}{Has this person been working here for more than 4 years?}
#' }
#'
#' ```{r}
#' data("hardlyworking")
#' head(hardlyworking, n = 5)
#' ```
#' @family effect size datasets
#'
NULL
#' Results from 2 Screening Tests
#'
#' A sample (simulated) dataset, used in tests and some examples.
#'
#' @docType data
#'
#' @name screening_test
#'
#' @keywords data
#'
#' @format A data frame with 1600 rows and 3 variables:
#' \describe{
#' \item{Diagnosis}{Ground truth}
#' \item{Test1}{Results given by the 1st test}
#' \item{Test2}{Results given by the 2nd test}
#' }
#' ```{r}
#' data("screening_test")
#' head(screening_test, n = 5)
#' ```
#'
#' @family effect size datasets
#'
NULL
# Tables ------------------------------------------------------------------
#' Fictional Results from a Workers' Randomized Control Trial
#'
#' @docType data
#'
#' @name RCT_table
#'
#' @keywords data
#'
#' @format A 2-by-2 table, with a *column* for each group and a *row* for the diagnosis.
#'
#' ```{r}
#' data("RCT_table")
#' RCT_table
#' ```
#'
#' @family effect size datasets
#'
NULL
#' Music Preference by College Major
#'
#' Fictional data.
#'
#' @docType data
#'
#' @name Music_preferences
#'
#' @keywords data
#'
#' @format A 4-by-3 table, with a *column* for each major and a *row* for each type of music.
#'
#' ```{r}
#' data("Music_preferences")
#' Music_preferences
#' ```
#'
#' @family effect size datasets
#'
NULL
#' Music Preference by College Major
#'
#' Fictional data, with more extreme preferences than [Music_preferences]
#'
#' @docType data
#'
#' @name Music_preferences2
#'
#' @keywords data
#'
#' @format A 4-by-3 table, with a *column* for each major and a *row* for each type of music.
#'
#' ```{r}
#' data("Music_preferences2")
#' Music_preferences2
#' ```
#'
#' @family effect size datasets
#'
NULL
#' Frequency of FASD for Smoking Mothers
#'
#' Fictional data.
#'
#' @docType data
#'
#' @name Smoking_FASD
#'
#' @keywords data
#'
#' @format A 1-by-3 table, with a *column* for each diagnosis.
#'
#' ```{r}
#' data("Smoking_FASD")
#' Smoking_FASD
#' ```
#'
#' @family effect size datasets
#'
NULL
#' Classification of Foods
#'
#' Fictional data.
#'
#' @docType data
#'
#' @name food_class
#'
#' @keywords data
#'
#' @format A 2-by-3 table.
#'
#' ```{r}
#' data("food_class")
#' food_class
#' ```
#'
#' @family effect size datasets
#'
NULL
|