1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#' @export
#' @rdname effectsize
#' @inheritParams bayestestR::describe_posterior
#' @importFrom insight get_data get_parameters check_if_installed
#' @importFrom bayestestR describe_posterior
effectsize.BFBayesFactor <- function(model, type = NULL, ci = 0.95, test = NULL, verbose = TRUE, ...) {
insight::check_if_installed("BayesFactor")
if (length(model) > 1) {
if (verbose) {
insight::format_warning("Multiple models detected. Using first only.")
}
model <- model[1]
}
if (inherits(model@numerator[[1]], "BFcontingencyTable")) {
pars <- .effectsize_contingencyTableBF(model, type = type, verbose = verbose, ...)
} else if (inherits(model@numerator[[1]], c("BFoneSample", "BFindepSample"))) {
pars <- .effectsize_ttestBF(model, type = type, verbose = verbose)
} else if (inherits(model@numerator[[1]], "BFcorrelation")) {
pars <- .effectsize_correlationBF(model, type = type, verbose = verbose)
} else if (inherits(model@numerator[[1]], "BFproportion")) {
pars <- .effectsize_proportionBF(model, type = type, verbose = verbose)
} else {
insight::format_error("No effect size for this type of 'BayesFactor' object.")
}
# Clean up
out <- bayestestR::describe_posterior(pars$res, ci = ci, test = test, ...)
if (isTRUE(type == "cles")) {
colnames(out)[2] <- "Coefficient"
} else {
colnames(out)[2] <- out$Parameter
out$Parameter <- NULL
}
class(out) <- c(pars$xtra_class, "effectsize_table", "see_effectsize_table", class(out))
.someattributes(out) <- pars$attr
.someattributes(out) <- list(
ci = out$CI,
approximate = FALSE,
alternative = "two.sided"
)
out
}
#' @keywords internal
.effectsize_contingencyTableBF <- function(model, type = NULL, verbose = TRUE, adjust = TRUE, ...) {
if (is.null(type)) type <- "cramers_v"
f <- switch(tolower(type),
v = ,
cramers_v = cramers_v,
t = ,
tschuprows_t = tschuprows_t,
w = ,
cohens_w = cohens_w,
phi = phi,
c = ,
pearsons_c = pearsons_c,
h = ,
cohens_h = cohens_h,
or = ,
oddsratio = oddsratio,
rr = ,
riskratio = riskratio
)
data <- insight::get_data(model)
posts <- insight::get_parameters(model)
ES <- apply(posts, 1, function(a) {
M <- matrix(a, nrow = nrow(data))
f(M, ci = NULL, adjust = adjust)[[1]]
})
res <- data.frame(ES)
colnames(res) <- colnames(f(data, ci = NULL, adjust = adjust))
list(
res = res,
attr = NULL,
xtra_class = NULL
)
}
#' @keywords internal
.effectsize_ttestBF <- function(model, type = NULL, verbose = TRUE) {
if (is.null(type) || tolower(type) == "cohens_d") {
type <- "d"
}
samps <- as.data.frame(BayesFactor::posterior(model, iterations = 4000, progress = FALSE))
paired <- inherits(model@numerator[[1]], "BFoneSample")
if (!paired) {
mu <- 0
D <- samps$delta
} else {
mu <- model@numerator[[1]]@prior$mu
D <- (samps$mu - mu) / sqrt(samps$sig2)
}
res <- data.frame(Cohens_d = D)
if (type == "d") {
xtra_class <- "effectsize_difference"
} else if (tolower(type) %in% c("p_superiority", "u1", "u2", "u3", "overlap")) {
if (paired && type != "p_superiority") insight::format_error("CLES only applicable to two independent samples.")
converter <- match.fun(paste0("d_to_", tolower(type)))
if (grepl("^(u|U)", type)) type <- paste0("Cohens_", toupper(type))
res <- data.frame(converter(res$Cohens_d), check.names = FALSE)
colnames(res) <- type
xtra_class <- NULL
}
list(
res = res,
attr = list(mu = mu, paired = paired, pooled_sd = TRUE),
xtra_class = xtra_class
)
}
# Others ------------------------------------------------------------------
# Wrappers
#' @keywords internal
.effectsize_correlationBF <- function(model, type = NULL, verbose = TRUE) {
rho <- insight::get_parameters(model)[["rho"]]
res <- data.frame(rho = rho)
list(
res = res,
attr = NULL,
xtra_class = NULL
)
}
#' @keywords internal
.effectsize_proportionBF <- function(model, type = NULL, verbose = TRUE) {
res <- insight::get_parameters(model)
p0 <- model@denominator@identifier[["p0"]]
xtra_footer <- list(c(sprintf("\n- Against the null: p = %s.", p0), "cyan"))
list(
res = res,
attr = list(xtra_footer = xtra_footer),
xtra_class = NULL
)
}
|