File: eta_squared-main.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (937 lines) | stat: -rw-r--r-- 33,654 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
#' \eqn{\eta^2} and Other Effect Size for ANOVA
#'
#' Functions to compute effect size measures for ANOVAs, such as Eta-
#' (\eqn{\eta}), Omega- (\eqn{\omega}) and Epsilon- (\eqn{\epsilon}) squared,
#' and Cohen's f (or their partialled versions) for ANOVA tables. These indices
#' represent an estimate of how much variance in the response variables is
#' accounted for by the explanatory variable(s).
#' \cr\cr
#' When passing models, effect sizes are computed using the sums of squares
#' obtained from `anova(model)` which might not always be appropriate. See
#' details.
#'
#' @param model A model, ANOVA object, or the result of `parameters::model_parameters`.
#' @param partial If `TRUE`, return partial indices.
#' @param generalized If TRUE, returns generalized Eta Squared, assuming all
#'   variables are manipulated. Can also be a character vector of observed
#'   (non-manipulated) variables, in which case generalized Eta Squared is
#'   calculated taking these observed variables into account. For `afex_aov`
#'   model, when `generalized = TRUE`, the observed variables are extracted
#'   automatically from the fitted model, if they were provided then.
#' @param verbose Toggle warnings and messages on or off.
#' @inheritParams chisq_to_phi
#' @param ... Arguments passed to or from other methods.
#'   - Can be `include_intercept = TRUE` to include the effect size for the intercept (when it is included in the ANOVA table).
#'   - For Bayesian models, arguments passed to `ss_function`.
#'
#' @return
#' A data frame with the effect size(s) between 0-1 (`Eta2`, `Epsilon2`,
#' `Omega2`, `Cohens_f` or `Cohens_f2`, possibly with the `partial` or
#' `generalized` suffix), and their CIs (`CI_low` and `CI_high`).
#' \cr\cr
#' For `eta_squared_posterior()`, a data frame containing the ppd of the Eta
#' squared for each fixed effect, which can then be passed to
#' [bayestestR::describe_posterior()] for summary stats.
#'
#' @details
#'
#' For `aov`, `aovlist` and `afex_aov` models, and for `anova` objects that
#' provide Sums-of-Squares, the effect sizes are computed directly using
#' Sums-of-Squares (for `mlm` / `maov` models, effect sizes are computed for
#' each response separately). For all other model, effect sizes are approximated
#' via test statistic conversion of the omnibus *F* statistic provided by the
#' appropriate `anova()` method (see [`F_to_eta2()`] for more details.)
#'
#' ## Type of Sums of Squares
#' The sums of squares (or *F* statistics) used for the computation of the
#' effect sizes is based on those returned by `anova(model)` (whatever those may
#' be - for `aov` and `aovlist` these are *type-1* sums of squares; for
#' `lmerMod` (and `lmerModLmerTest`) these are *type-3* sums of squares). Make
#' sure these are the sums of squares you are interested in; You might want to
#' pass the result of `car::Anova(mode, type = 2)` or `type = 3` instead of the
#' model itself, or use the `afex` package to fit ANOVA models.
#' \cr\cr
#' For type 3 sum of squares, it is generally recommended to fit models with
#' *`contr.sum` factor weights* and *centered covariates*, for sensible results.
#' See examples and the `afex` package.
#'
#' ## Un-Biased Estimate of Eta
#' Both ***Omega*** and ***Epsilon*** are unbiased estimators of the
#' population's ***Eta***, which is especially important is small samples. But
#' which to choose?
#' \cr\cr
#' Though Omega is the more popular choice (Albers and Lakens, 2018), Epsilon is
#' analogous to adjusted R2 (Allen, 2017, p. 382), and has been found to be less
#' biased (Carroll & Nordholm, 1975).
#'
#' ## Cohen's f
#' Cohen's f can take on values between zero, when the population means are all
#' equal, and an indefinitely large number as standard deviation of means
#' increases relative to the average standard deviation within each group.
#' \cr\cr
#' When comparing two models in a sequential regression analysis, Cohen's f for
#' R-square change is the ratio between the increase in R-square
#' and the percent of unexplained variance.
#' \cr\cr
#' Cohen has suggested that the values of 0.10, 0.25, and 0.40 represent small,
#' medium, and large effect sizes, respectively.
#'
#' ## Eta Squared from Posterior Predictive Distribution
#' For Bayesian models (fit with `brms` or `rstanarm`),
#' `eta_squared_posterior()` simulates data from the posterior predictive
#' distribution (ppd) and for each simulation the Eta Squared is computed for
#' the model's fixed effects. This means that the returned values are the
#' population level effect size as implied by the posterior model (and not the
#' effect size in the sample data). See [rstantools::posterior_predict()] for
#' more info.
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @seealso [F_to_eta2()]
#' @family effect sizes for ANOVAs
#'
#' @examples
#' data(mtcars)
#' mtcars$am_f <- factor(mtcars$am)
#' mtcars$cyl_f <- factor(mtcars$cyl)
#'
#' model <- aov(mpg ~ am_f * cyl_f, data = mtcars)
#'
#' (eta2 <- eta_squared(model))
#'
#' # More types:
#' eta_squared(model, partial = FALSE)
#' eta_squared(model, generalized = "cyl_f")
#' omega_squared(model)
#' epsilon_squared(model)
#' cohens_f(model)
#'
#' model0 <- aov(mpg ~ am_f + cyl_f, data = mtcars) # no interaction
#' cohens_f_squared(model0, model2 = model)
#'
#' ## Interpretation of effect sizes
#' ## ------------------------------
#'
#' interpret_omega_squared(0.10, rules = "field2013")
#' interpret_eta_squared(0.10, rules = "cohen1992")
#' interpret_epsilon_squared(0.10, rules = "cohen1992")
#'
#' interpret(eta2, rules = "cohen1992")
#'
#' @examplesIf require("see") && interactive()
#' plot(eta2) # Requires the {see} package
#'
#' @examplesIf require("car")
#' # Recommended: Type-2 or -3 effect sizes + effects coding
#' # -------------------------------------------------------
#' contrasts(mtcars$am_f) <- contr.sum
#' contrasts(mtcars$cyl_f) <- contr.sum
#'
#' model <- aov(mpg ~ am_f * cyl_f, data = mtcars)
#' model_anova <- car::Anova(model, type = 3)
#'
#' epsilon_squared(model_anova)
#'
#' @examplesIf require("car") && require("afex")
#' # afex takes care of both type-3 effects and effects coding:
#' data(obk.long, package = "afex")
#' model <- afex::aov_car(value ~ gender + Error(id / (phase * hour)),
#'   data = obk.long, observed = "gender"
#' )
#'
#' omega_squared(model)
#' eta_squared(model, generalized = TRUE) # observed vars are pulled from the afex model.
#'
#' @examplesIf require("lmerTest") && require("lme4") && FALSE
#' ## Approx. effect sizes for mixed models
#' ## -------------------------------------
#' model <- lme4::lmer(mpg ~ am_f * cyl_f + (1 | vs), data = mtcars)
#' omega_squared(model)
#'
#' @examplesIf require(rstanarm) && require(bayestestR) && require(car) && interactive()
#' ## Bayesian Models (PPD)
#' ## ---------------------
#' fit_bayes <- rstanarm::stan_glm(
#'   mpg ~ factor(cyl) * wt + qsec,
#'   data = mtcars, family = gaussian(),
#'   refresh = 0
#' )
#'
#' es <- eta_squared_posterior(fit_bayes,
#'   verbose = FALSE,
#'   ss_function = car::Anova, type = 3
#' )
#' bayestestR::describe_posterior(es, test = NULL)
#'
#'
#' # compare to:
#' fit_freq <- lm(mpg ~ factor(cyl) * wt + qsec,
#'   data = mtcars
#' )
#' aov_table <- car::Anova(fit_freq, type = 3)
#' eta_squared(aov_table)
#'
#' @return A data frame containing the effect size values and their confidence
#'   intervals.
#'
#' @references
#' - Albers, C., and Lakens, D. (2018). When power analyses based on pilot data
#' are biased: Inaccurate effect size estimators and follow-up bias. Journal of
#' experimental social psychology, 74, 187-195.
#'
#' - Allen, R. (2017). Statistics and Experimental Design for Psychologists: A
#' Model Comparison Approach. World Scientific Publishing Company.
#'
#' - Carroll, R. M., & Nordholm, L. A. (1975). Sampling Characteristics of
#' Kelley's epsilon and Hays' omega. Educational and Psychological Measurement,
#' 35(3), 541-554.
#'
#' - Kelley, T. (1935) An unbiased correlation ratio measure. Proceedings of the
#' National Academy of Sciences. 21(9). 554-559.
#'
#' - Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared
#' statistics: measures of effect size for some common research designs.
#' Psychological methods, 8(4), 434.
#'
#' - Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals
#' and tests of close fit in the analysis of variance and contrast analysis.
#' Psychological Methods, 9, 164-182.
#'
#' @export
eta_squared <- function(model,
                        partial = TRUE, generalized = FALSE,
                        ci = 0.95, alternative = "greater",
                        verbose = TRUE, ...) {
  alternative <- .match.alt(alternative, FALSE)
  out <- .anova_es(
    model,
    type = "eta",
    partial = partial,
    generalized = generalized,
    ci = ci, alternative = alternative,
    verbose = verbose,
    ...
  )
  class(out) <- unique(c("effectsize_anova", "effectsize_table", "see_effectsize_table", class(out)))
  if ("CI" %in% colnames(out)) attr(out, "ci_method") <- list(method = "ncp", distribution = "F")
  attr(out, "approximate") <- isTRUE(attr(out, "approximate", exact = TRUE))
  return(out)
}

#' @rdname eta_squared
#' @export
omega_squared <- function(model,
                          partial = TRUE,
                          ci = 0.95, alternative = "greater",
                          verbose = TRUE, ...) {
  alternative <- .match.alt(alternative, FALSE)
  out <- .anova_es(model, type = "omega", partial = partial, ci = ci, alternative = alternative, verbose = verbose, ...)
  class(out) <- unique(c("effectsize_anova", "effectsize_table", "see_effectsize_table", class(out)))
  if ("CI" %in% colnames(out)) attr(out, "ci_method") <- list(method = "ncp", distribution = "F")
  attr(out, "approximate") <- isTRUE(attr(out, "approximate", exact = TRUE))
  return(out)
}

#' @rdname eta_squared
#' @export
epsilon_squared <- function(model,
                            partial = TRUE,
                            ci = 0.95, alternative = "greater",
                            verbose = TRUE, ...) {
  alternative <- .match.alt(alternative, FALSE)
  out <- .anova_es(model, type = "epsilon", partial = partial, ci = ci, alternative = alternative, verbose = verbose, ...)
  class(out) <- unique(c("effectsize_anova", "effectsize_table", "see_effectsize_table", class(out)))
  if ("CI" %in% colnames(out)) attr(out, "ci_method") <- list(method = "ncp", distribution = "F")
  attr(out, "approximate") <- isTRUE(attr(out, "approximate", exact = TRUE))
  return(out)
}

#' @rdname eta_squared
#' @inheritParams F_to_f
#' @param model2 Optional second model for Cohen's f (/squared). If specified,
#'   returns the effect size for R-squared-change between the two models.
#' @export
cohens_f <- function(model,
                     partial = TRUE, squared = FALSE, model2 = NULL,
                     ci = 0.95, alternative = "greater",
                     verbose = TRUE, ...) {
  alternative <- .match.alt(alternative, FALSE)
  if (!is.null(model2)) {
    return(.cohens_f_delta(model, model2,
      squared = squared,
      ci = ci, alternative = alternative,
      verbose = verbose
    ))
  }

  res <- eta_squared(model,
    partial = partial,
    ci = ci, alternative = alternative,
    verbose = verbose,
    ...
  )

  if ("Eta2_partial" %in% colnames(res)) {
    res$Eta2_partial <- res$Eta2_partial / (1 - res$Eta2_partial)
    colnames(res)[colnames(res) == "Eta2_partial"] <- "Cohens_f2_partial"
  } else {
    res$Eta2 <- res$Eta2 / (1 - res$Eta2)
    colnames(res)[colnames(res) == "Eta2"] <- "Cohens_f2"
  }

  if (!is.null(ci)) {
    res$CI_low <- res$CI_low / (1 - res$CI_low)
    res$CI_high <- res$CI_high / (1 - res$CI_high)
  }


  if (!squared) {
    i <- colnames(res) %in% c("Cohens_f2", "Cohens_f2_partial", "CI_low", "CI_high")
    res[i] <- sqrt(res[i])
    colnames(res)[colnames(res) %in% c("Cohens_f2", "Cohens_f2_partial")] <-
      if ("Cohens_f2" %in% colnames(res)) "Cohens_f" else "Cohens_f_partial"
  }

  if ("CI" %in% colnames(res)) attr(res, "ci_method") <- list(method = "ncp", distribution = "F")
  class(res) <- unique(c("effectsize_anova", "effectsize_table", "see_effectsize_table", class(res)))
  attr(res, "approximate") <- isTRUE(attr(res, "approximate", exact = TRUE))
  res
}

#' @rdname eta_squared
#' @export
cohens_f_squared <- function(model,
                             partial = TRUE, squared = TRUE, model2 = NULL,
                             ci = 0.95, alternative = "greater",
                             verbose = TRUE, ...) {
  cohens_f(
    model,
    partial = partial, squared = squared, model2 = model2,
    ci = ci, alternative = alternative,
    verbose = verbose, ...
  )
}


#' @keywords internal
#' @importFrom insight model_info
.cohens_f_delta <- function(model, model2,
                            squared = FALSE,
                            ci = 0.95, alternative = "greater",
                            verbose = TRUE) {
  # check
  if (!inherits(model, "lm") ||
    !inherits(model2, "lm") ||
    !insight::model_info(model)$is_linear ||
    !insight::model_info(model2)$is_linear) {
    insight::format_error("Cohen's f for R2-change only supported for fixed effect linear models.")
  }

  # Anova
  ANOVA <- anova(model, model2)
  out <- F_to_f(ANOVA[2, "F"], abs(ANOVA[2, "Df"]), min(ANOVA["Res.Df"]),
    ci = ci, alternative = alternative,
    squared = squared
  )

  R2d <- performance::r2(model)[[1]] - performance::r2(model2)[[1]]
  out$R2_delta <- abs(R2d)

  return(out)
}

# Get ES ------------------------------------------------------------------

#' @param aov_table Input data frame
#' @param type Which effect size to compute?
#' @param include_intercept Should the intercept (`(Intercept)`) be included?
#' @param partial,generalized,ci,alternative,verbose See [eta_squared()].
#'
#' @rdname effectsize_API
#' @export
.es_aov_simple <- function(aov_table,
                           type = c("eta", "omega", "epsilon"),
                           partial = TRUE, generalized = FALSE,
                           include_intercept = FALSE,
                           ci = 0.95, alternative = "greater",
                           verbose = TRUE) {
  type <- match.arg(type)
  aov_table <- as.data.frame(aov_table)

  # Clean up data ---
  if (!"Mean_Square" %in% colnames(aov_table)) {
    aov_table[["Mean_Square"]] <- aov_table[["Sum_Squares"]] / aov_table[["df"]]
  }

  if (!"Residuals" %in% aov_table$Parameter) {
    insight::format_error("No residuals data found - cannot compute effect size.")
  }


  # Include intercept? ---
  if (include_intercept) {
    if (verbose && !"(Intercept)" %in% aov_table$Parameter) {
      insight::format_warning("Could not find Sum-of-Squares for the (Intercept) in the ANOVA table.")
    }
    values <- .values_aov(aov_table[aov_table$Parameter != "(Intercept)", ])
  } else {
    aov_table <- aov_table[aov_table$Parameter != "(Intercept)", ]
    values <- .values_aov(aov_table)
  }

  # Get error df ---
  df_error <- aov_table$df[aov_table$Parameter == "Residuals"]
  aov_table <- aov_table[aov_table$Parameter != "Residuals", , drop = FALSE]


  # Validate anova type (1,2,3) and partial ---
  anova_type <- NULL
  if (nrow(aov_table) == 1L &&
    (partial || isTRUE(generalized) || is.character(generalized))) {
    if (verbose) {
      txt_type <- ifelse(isTRUE(generalized) || is.character(generalized), "generalized", "partial")
      insight::format_alert(
        sprintf(
          "For one-way between subjects designs, %s %s squared is equivalent to %s squared. Returning %s squared.",
          txt_type, type, type, type
        )
      )
    }
    partial <- FALSE
    anova_type <- NA
  }


  # Estimate effect size ---
  if (type == "eta") {
    if (isTRUE(generalized) || is.character(generalized)) {
      ## copied from afex
      obs <- logical(nrow(aov_table))
      if (is.character(generalized)) {
        for (o in generalized) {
          oi <- grepl(paste0("\\b", o, "\\b"), aov_table$Parameter)

          if (!any(oi)) insight::format_error(sprintf("Observed variable not in data: %s", o))

          obs <- obs | oi
        }
      }
      obs_SSn1 <- sum(aov_table$Sum_Squares * obs)
      obs_SSn2 <- aov_table$Sum_Squares * obs

      aov_table$Eta2_generalized <- aov_table$Sum_Squares /
        (aov_table$Sum_Squares + values$Sum_Squares_residuals + obs_SSn1 - obs_SSn2)
    } else if (!isTRUE(partial)) {
      aov_table$Eta2 <- aov_table$Sum_Squares /
        values$Sum_Squares_total
    } else {
      aov_table$Eta2_partial <-
        aov_table$Sum_Squares /
          (aov_table$Sum_Squares + values$Sum_Squares_residuals)
    }
  } else if (type == "omega") {
    if (!isTRUE(partial)) {
      aov_table$Omega2 <-
        (aov_table$Sum_Squares - aov_table$df * values$Mean_Square_residuals) /
          (values$Sum_Squares_total + values$Mean_Square_residuals)
      aov_table$Omega2 <- pmax(0, aov_table$Omega2)
    } else {
      aov_table$Omega2_partial <-
        (aov_table$Sum_Squares - aov_table$df * values$Mean_Square_residuals) /
          (aov_table$Sum_Squares + (values$n - aov_table$df) * values$Mean_Square_residuals)
      aov_table$Omega2_partial <- pmax(0, aov_table$Omega2_partial)
    }
  } else if (type == "epsilon") {
    if (!isTRUE(partial)) {
      aov_table$Epsilon2 <-
        (aov_table$Sum_Squares - aov_table$df * values$Mean_Square_residuals) /
          values$Sum_Squares_total
      aov_table$Epsilon2 <- pmax(0, aov_table$Epsilon2)
    } else {
      aov_table$Epsilon2_partial <-
        (aov_table$Sum_Squares - aov_table$df * values$Mean_Square_residuals) /
          (aov_table$Sum_Squares + values$Sum_Squares_residuals)
      aov_table$Epsilon2_partial <- pmax(0, aov_table$Epsilon2_partial)
    }
  }

  out <- aov_table

  # Add CIs ---
  if (!is.null(ci)) {
    # based on MBESS::ci.R2
    ES <- pmax(0, out[[ncol(out)]])
    f <- (ES / out$df) / ((1 - ES) / df_error)

    CI_tab <- # This really is a generic F_to_R2
      F_to_eta2(f,
        out$df,
        df_error,
        ci = ci, alternative = alternative,
        verbose = verbose
      )[-1]

    out[c("CI", "CI_low", "CI_high")] <- CI_tab[c("CI", "CI_low", "CI_high")]
  } else {
    alternative <- NULL
  }


  # Clean up output ---
  out <- out[, colnames(out) %in% c(
    "Parameter",
    "Eta2", "Eta2_partial", "Eta2_generalized",
    "Omega2", "Omega2_partial",
    "Epsilon2", "Epsilon2_partial",
    if (!is.null(ci)) c("CI", "CI_low", "CI_high")
  ), drop = FALSE]
  rownames(out) <- NULL
  out$Parameter <- as.character(out$Parameter)

  # Set attributes ---
  attr(out, "generalized") <- generalized
  attr(out, "ci") <- ci
  attr(out, "anova_type") <- anova_type
  attr(out, "approximate") <- FALSE
  attr(out, "alternative") <- alternative
  out
}

#' @param DV_names A character vector with the names of all the predictors,
#'   including the grouping variable (e.g., `"Subject"`).
#'
#' @rdname effectsize_API
#' @export
.es_aov_strata <- function(aov_table, DV_names,
                           type = c("eta", "omega", "epsilon"),
                           partial = TRUE, generalized = FALSE,
                           include_intercept = FALSE,
                           ci = 0.95, alternative = "greater",
                           verbose = TRUE) {
  type <- match.arg(type)
  aov_table <- as.data.frame(aov_table)

  # Clean up data ---
  if (!"Mean_Square" %in% colnames(aov_table)) {
    aov_table[["Mean_Square"]] <- aov_table[["Sum_Squares"]] / aov_table[["df"]]
  }

  if (!"Residuals" %in% aov_table$Parameter) {
    insight::format_error("No residuals data found - cannot compute effect size.")
  }


  # Include intercept? ---
  if (include_intercept) {
    if (verbose && !"(Intercept)" %in% aov_table$Parameter) {
      insight::format_warning("Could not find Sum-of-Squares for the (Intercept) in the ANOVA table.")
    }
    values <- .values_aov(aov_table[aov_table$Parameter != "(Intercept)", ], group = TRUE)
  } else {
    aov_table <- aov_table[aov_table$Parameter != "(Intercept)", ]
    values <- .values_aov(aov_table, group = TRUE)
  }


  # Get all the correct SSs... ---
  aov_table <- aov_table[aov_table$Parameter != "Residuals", , drop = FALSE]
  Sum_Squares_total <- sum(sapply(values, "[[", "Sum_Squares_total"))
  Sum_Squares_residuals <- sapply(values[aov_table$Group], "[[", "Sum_Squares_residuals")
  Mean_Square_residuals <- sapply(values[aov_table$Group], "[[", "Mean_Square_residuals")
  df_residuals <- sapply(values[aov_table$Group], "[[", "df_residuals")
  ns <- sapply(values[aov_table$Group], "[[", "n")


  # Estimate effect size ---
  if (type == "eta") {
    if (isTRUE(generalized) || is.character(generalized)) {
      ## copied from afex
      obs <- logical(nrow(aov_table))
      if (is.character(generalized)) {
        for (o in generalized) {
          oi <- grepl(paste0("\\b", o, "\\b"), aov_table$Parameter)

          if (!any(oi)) insight::format_error(sprintf("Observed variable not in data: %s", o))

          obs <- obs | oi
        }
      }
      obs_SSn1 <- sum(aov_table$Sum_Squares * obs)
      obs_SSn2 <- aov_table$Sum_Squares * obs

      aov_table$Eta2_generalized <- aov_table$Sum_Squares /
        (aov_table$Sum_Squares + sum(sapply(values, "[[", "Sum_Squares_residuals")) +
          obs_SSn1 - obs_SSn2)
    } else if (!isTRUE(partial)) {
      aov_table$Eta2 <- aov_table$Sum_Squares / Sum_Squares_total
    } else {
      aov_table$Eta2_partial <-
        aov_table$Sum_Squares /
          (aov_table$Sum_Squares + Sum_Squares_residuals)
    }
  } else if (type == "omega") {
    SSS_values <- values[[which(names(values) %in% DV_names)]]
    is_within <- !aov_table$Group %in% DV_names
    Sum_Squares_Subjects <- SSS_values$Sum_Squares_residuals
    Mean_Squares_Subjects <- SSS_values$Mean_Square_residuals

    # implemented from https://www.jasonfinley.com/tools/OmegaSquaredQuickRef_JRF_3-31-13.pdf/
    if (!isTRUE(partial)) {
      aov_table$Omega2 <-
        (aov_table$Sum_Squares - aov_table$df * Mean_Square_residuals) /
          (Sum_Squares_total + Mean_Squares_Subjects)
      aov_table$Omega2 <- pmax(0, aov_table$Omega2)
    } else {
      aov_table$Omega2_partial <-
        (aov_table$Sum_Squares - aov_table$df * Mean_Square_residuals) /
          (aov_table$Sum_Squares + is_within * Sum_Squares_residuals +
            Sum_Squares_Subjects + Mean_Squares_Subjects)
      aov_table$Omega2_partial <- pmax(0, aov_table$Omega2_partial)
    }
  } else if (type == "epsilon") {
    if (!isTRUE(partial)) {
      aov_table$Epsilon2 <-
        (aov_table$Sum_Squares - aov_table$df * Mean_Square_residuals) /
          Sum_Squares_total
      aov_table$Epsilon2 <- pmax(0, aov_table$Epsilon2)
    } else {
      aov_table$Epsilon2_partial <-
        (aov_table$Sum_Squares - aov_table$df * Mean_Square_residuals) /
          (aov_table$Sum_Squares + Sum_Squares_residuals)
      aov_table$Epsilon2_partial <- pmax(0, aov_table$Epsilon2_partial)
    }
  }

  out <- aov_table


  # Add CIs ---
  if (!is.null(ci)) {
    # based on MBESS::ci.R2
    ES <- pmax(0, out[[ncol(out)]])
    f <- (ES / out$df) / ((1 - ES) / df_residuals)

    CI_tab <- # This really is a generic F_to_R2
      F_to_eta2(f,
        out$df,
        df_residuals,
        ci = ci, alternative = alternative,
        verbose = verbose
      )[-1]

    out[c("CI", "CI_low", "CI_high")] <- CI_tab[c("CI", "CI_low", "CI_high")]
  } else {
    alternative <- NULL
  }


  # Clean up output ---
  out <- out[, colnames(out) %in% c(
    "Group",
    "Parameter",
    "Eta2", "Eta2_generalized", "Eta2_partial",
    "Omega2", "Omega2_partial",
    "Epsilon2", "Epsilon2_partial",
    if (!is.null(ci)) c("CI", "CI_low", "CI_high")
  ), drop = FALSE]
  rownames(out) <- NULL
  out$Parameter <- as.character(out$Parameter)

  attr(out, "generalized") <- generalized
  attr(out, "ci") <- ci
  attr(out, "approximate") <- FALSE
  attr(out, "alternative") <- alternative
  out
}

#' @rdname effectsize_API
#' @export
.es_aov_table <- function(aov_table,
                          type = c("eta", "omega", "epsilon"),
                          partial = TRUE, generalized = FALSE,
                          include_intercept = FALSE,
                          ci = 0.95, alternative = "greater",
                          verbose = TRUE) {
  aov_table <- as.data.frame(aov_table)

  # Get correct function ---
  type <- match.arg(type)
  es_fun <- switch(type,
    eta = F_to_eta2,
    omega = F_to_omega2,
    epsilon = F_to_epsilon2
  )


  # Non-Partial / Generalized -> BAD ---
  if (verbose) {
    if (!isTRUE(partial)) {
      insight::format_warning(
        sprintf("Currently only supports partial %s squared for this class of objects.", type)
      )
    }

    if (isTRUE(generalized) || is.character(generalized)) {
      insight::format_warning(
        sprintf("Generalized %s squared is not supported for this class of object.", type)
      )
    }
  }


  # Turn ts to Fs (if needed) ---
  if (!"F" %in% colnames(aov_table)) {
    if ("t" %in% colnames(aov_table)) {
      aov_table[["F"]] <- aov_table[["t"]]^2
      aov_table[["df"]] <- 1
    } else {
      insight::format_error("ANOVA table does not have F values - cannot compute effect size.")
    }
  }


  # include_intercept? ---
  if (include_intercept) {
    if (verbose && !"(Intercept)" %in% aov_table$Parameter) {
      insight::format_warning("Could not find F statistic for the (Intercept) in the ANOVA table.")
    }
  } else {
    aov_table <- aov_table[aov_table$Parameter != "(Intercept)", , drop = FALSE]
  }


  ES_tab <- es_fun(aov_table[["F"]],
    aov_table[["df"]],
    aov_table[["df_error"]],
    ci = ci, alternative = alternative,
    verbose = verbose
  )

  out <- cbind(Parameter = aov_table[["Parameter"]], ES_tab)
  rownames(out) <- NULL
  out$Parameter <- as.character(out$Parameter)

  # Set attributes ---
  attr(out, "generalized") <- FALSE
  attr(out, "ci") <- if ("CI" %in% colnames(out)) ci
  attr(out, "alternative") <- if (!is.null(attr(out, "ci"))) alternative
  attr(out, "anova_type") <- NULL
  attr(out, "approximate") <- NULL
  out
}

# Default wrappers -------------------------------------------------------
# see eta_squared-methods.R for more

#' @keywords internal
.anova_es <-
  function(model,
           type = c("eta", "omega", "epsilon"),
           partial = TRUE,
           generalized = FALSE,
           ci = 0.95, alternative = "greater",
           verbose = TRUE,
           ...) {
    UseMethod(".anova_es")
  }

#' @keywords internal
#' @importFrom stats anova
.anova_es.default <- function(model,
                              type = c("eta", "omega", "epsilon"),
                              partial = TRUE,
                              generalized = FALSE,
                              ci = 0.95, alternative = "greater",
                              verbose = TRUE,
                              ...) {
  .anova_es.anova(
    stats::anova(model),
    type = type,
    partial = partial,
    generalized = generalized,
    ci = ci,
    alternative = alternative,
    verbose = verbose
  )
}

#' @keywords internal
#' @importFrom parameters model_parameters
#' @importFrom stats anova
.anova_es.aov <- function(model,
                          type = c("eta", "omega", "epsilon"),
                          partial = TRUE,
                          generalized = FALSE,
                          ci = 0.95, alternative = "greater",
                          verbose = TRUE,
                          ...) {
  if (!inherits(model, c("Gam", "anova"))) {
    # Pass to ANOVA table method
    res <- .anova_es.anova(
      stats::anova(model),
      type = type,
      partial = partial,
      generalized = generalized,
      ci = ci, alternative = alternative,
      verbose = verbose,
      ...
    )
    return(res)
  }

  params <- parameters::model_parameters(model, verbose = verbose, effects = "fixed")
  out <- .es_aov_simple(as.data.frame(params), type, partial, generalized, ci, alternative, verbose = verbose, ...)
  if (is.null(attr(out, "anova_type"))) attr(out, "anova_type") <- attr(params, "anova_type")
  out
}

.anova_es.lm <- .anova_es.aov

.anova_es.glm <- .anova_es.aov

.anova_es.manova <- .anova_es.aov

#' @keywords internal
#' @importFrom parameters model_parameters
#' @importFrom insight find_predictors
.anova_es.aovlist <- function(model,
                              type = c("eta", "omega", "epsilon"),
                              partial = TRUE,
                              generalized = FALSE,
                              ci = 0.95, alternative = "greater",
                              verbose = TRUE,
                              include_intercept = FALSE,
                              ...) {
  params <- parameters::model_parameters(model, verbose = verbose, effects = "fixed")
  anova_type <- attr(params, "anova_type")
  params <- as.data.frame(params)

  DV_names <- insight::find_predictors(model)[[1]]

  out <-
    .es_aov_strata(
      params,
      DV_names = DV_names,
      type = type,
      partial = partial,
      generalized = generalized,
      ci = ci, alternative = alternative,
      verbose = verbose,
      include_intercept = include_intercept
    )
  attr(out, "anova_type") <- anova_type
  out
}

#' @keywords internal
.anova_es.anova <- function(model,
                            type = c("eta", "omega", "epsilon"),
                            partial = TRUE,
                            generalized = FALSE,
                            ci = 0.95, alternative = "greater",
                            verbose = TRUE,
                            include_intercept = FALSE,
                            ...) {
  F.nm <- c("F value", "approx F", "F-value", "F")
  df.nm <- c("NumDF", "num Df", "numDF", "npar", "Df")
  df_error.nm <- c("DenDF", "den Df", "denDF", "df_error", "Df.res")

  # If there is no df_error *or* is there IS a residuals row...
  if (!any(df_error.nm %in% colnames(model))) {
    # Pass to AOV method
    res <- .anova_es.aov(model,
      partial = partial,
      type = type,
      generalized = generalized,
      ci = ci, alternative = alternative,
      verbose = verbose,
      include_intercept = include_intercept,
      ...
    )
    return(res)
  }

  if (!any(F.nm %in% colnames(model)) || !any(df.nm %in% colnames(model))) {
    insight::format_error("ANOVA table does not have F values or degrees of freedom - cannot compute effect size.")
  }

  Fi <- F.nm[F.nm %in% colnames(model)]
  dfi <- df.nm[df.nm %in% colnames(model)]
  df_errori <- df_error.nm[df_error.nm %in% colnames(model)]

  if (length(dfi) > 1L) {
    dfi <- dfi[1] # For MANOVA this should not use the MV-df
  }

  # Clean up table ---
  par_table <- data.frame(
    Parameter = rownames(model),
    F = model[, Fi],
    df = model[, dfi],
    df_error = model[, df_errori]
  )
  par_table <- par_table[!par_table[["Parameter"]] %in% "Residuals", ]

  out <-
    .es_aov_table(
      par_table,
      type = type,
      partial = partial,
      generalized = generalized,
      ci = ci,
      alternative = alternative,
      verbose = verbose,
      include_intercept = include_intercept
    )

  attr(out, "anova_type") <- tryCatch(attr(parameters::model_parameters(model, verbose = FALSE, effects = "fixed"), "anova_type"),
    error = function(...) 1
  )
  attr(out, "approximate") <- TRUE
  out
}




# Utils -------------------------------------------------------------------

#' @keywords internal
.values_aov <- function(params, group = FALSE) {
  # number of observations
  if (isTRUE(group)) {
    lapply(split(params, params$Group), function(.i) {
      N <- sum(.i$df) + 1
      .prepare_values_aov(.i, N)
    })
  } else {
    N <- sum(params$df) + 1
    .prepare_values_aov(params, N)
  }
}


#' @keywords internal
.prepare_values_aov <- function(params, N) {
  iResid <- params$Parameter == "Residuals"
  # get mean squared of residuals
  Mean_Square_residuals <- sum(params[iResid, "Mean_Square"])
  # get sum of squares of residuals
  Sum_Squares_residuals <- sum(params[iResid, "Sum_Squares"])
  # get total sum of squares
  Sum_Squares_total <- sum(params$Sum_Squares)
  # number of terms in model
  N_terms <- nrow(params) - 1
  # df residuals
  df_residuals <- sum(params[iResid, "df"])

  list(
    "Mean_Square_residuals" = Mean_Square_residuals,
    "Sum_Squares_residuals" = Sum_Squares_residuals,
    "Sum_Squares_total" = Sum_Squares_total,
    "n_terms" = N_terms,
    "n" = N,
    "df_residuals" = df_residuals
  )
}