File: interpret.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (246 lines) | stat: -rw-r--r-- 6,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Rules ---------------------------------------------------------------


#' Create an Interpretation Grid
#'
#' Create a container for interpretation rules of thumb. Usually used in conjunction with [interpret].
#'
#' @param values Vector of reference values (edges defining categories or
#'   critical values).
#' @param labels Labels associated with each category. If `NULL`, will try to
#'   infer it from `values` (if it is a named vector or a list), otherwise, will
#'   return the breakpoints.
#' @param name Name of the set of rules (will be printed).
#' @param right logical, for threshold-type rules, indicating if the thresholds
#'   themselves should be included in the interval to the right (lower values)
#'   or in the interval to the left (higher values).
#'
#'
#'
#' @seealso [interpret()]
#'
#' @examples
#' rules(c(0.05), c("significant", "not significant"), right = FALSE)
#' rules(c(0.2, 0.5, 0.8), c("small", "medium", "large"))
#' rules(c("small" = 0.2, "medium" = 0.5), name = "Cohen's Rules")
#' @export
rules <- function(values, labels = NULL, name = NULL, right = TRUE) {
  if (is.null(labels)) {
    if (is.list(values)) {
      values <- unlist(values)
    }
    if (is.null(names(values))) {
      labels <- values
    } else {
      labels <- names(values)
    }
  }

  # Sanity checks
  if (length(labels) < length(values)) {
    insight::format_error("There cannot be less labels than reference values!")
  } else if (length(labels) > length(values) + 1) {
    insight::format_error("Too many labels for the number of reference values!")
  }

  if (length(values) == length(labels) - 1) {
    if (is.unsorted(values)) {
      insight::format_error("Reference values must be sorted.")
    }
  } else {
    right <- NULL
  }

  # Store and return
  out <- list(
    values = values,
    labels = labels
  )

  if (is.null(name)) {
    attr(out, "rule_name") <- "Custom rules"
  } else {
    attr(out, "rule_name") <- name
  }

  attr(out, "right") <- right
  class(out) <- c("rules", "list")
  out
}




#' @rdname rules
#' @param x An arbitrary R object.
#' @export
is.rules <- function(x) inherits(x, "rules")




# Interpret ---------------------------------------------------------------



#' Generic Function for Interpretation
#'
#' Interpret a value based on a set of rules. See [rules()].
#'
#' @param x Vector of value break points (edges defining categories), or a data
#'   frame of class `effectsize_table`.
#' @param rules Set of [rules()]. When `x` is a data frame, can be a name of an
#'   established set of rules.
#' @param ... Currently not used.
#' @inheritParams rules
#'
#' @return
#' - For numeric input: A character vector of interpretations.
#' - For data frames: the `x` input with an additional `Interpretation` column.
#'
#' @seealso [rules()]
#' @examples
#' rules_grid <- rules(c(0.01, 0.05), c("very significant", "significant", "not significant"))
#' interpret(0.001, rules_grid)
#' interpret(0.021, rules_grid)
#' interpret(0.08, rules_grid)
#' interpret(c(0.01, 0.005, 0.08), rules_grid)
#'
#' interpret(c(0.35, 0.15), c("small" = 0.2, "large" = 0.4), name = "Cohen's Rules")
#' interpret(c(0.35, 0.15), rules(c(0.2, 0.4), c("small", "medium", "large")))
#'
#' # ----------
#' d <- cohens_d(mpg ~ am, data = mtcars)
#' interpret(d, rules = "cohen1988")
#'
#' d <- glass_delta(mpg ~ am, data = mtcars)
#' interpret(d, rules = "gignac2016")
#'
#' interpret(d, rules = rules(1, c("tiny", "yeah okay")))
#'
#' m <- lm(formula = wt ~ am * cyl, data = mtcars)
#' eta2 <- eta_squared(m)
#' interpret(eta2, rules = "field2013")
#'
#' X <- chisq.test(mtcars$am, mtcars$cyl == 8)
#' interpret(oddsratio(X), rules = "chen2010")
#' interpret(cramers_v(X), "lovakov2021")
#' @export
interpret <- function(x, ...) {
  UseMethod("interpret")
}


#' @rdname interpret
#' @export
interpret.numeric <- function(x, rules, name = attr(rules, "rule_name"), ...) {
  if (!inherits(rules, "rules")) {
    rules <- rules(rules)
  }

  if (is.null(name)) name <- "Custom rules"
  attr(rules, "rule_name") <- name

  if (length(x) > 1) {
    out <- sapply(x, .interpret, rules)
  } else {
    out <- .interpret(x, rules)
  }

  names(out) <- names(x)

  class(out) <- c("effectsize_interpret", class(out))
  attr(out, "rules") <- rules
  out
}

#' @rdname interpret
#' @export
interpret.effectsize_table <- function(x, rules, ...) {
  if (missing(rules)) insight::format_error("You {.b must} specify the rules of interpretation!")

  es_name <- colnames(x)[is_effectsize_name(colnames(x))]
  value <- x[[es_name]]

  x$Interpretation <- switch(es_name,
    ## std diff
    Cohens_d = ,
    Hedges_g = ,
    Glass_delta = ,
    Mahalanobis_D = interpret_cohens_d(value, rules = rules),

    ## xtab cor
    Cramers_v = ,
    Cramers_v_adjusted = ,
    phi = ,
    phi_adjusted = ,
    Pearsons_c = ,
    Cohens_w = ,
    Tschuprows_t = ,
    fei = interpret_cramers_v(value, rules = rules),

    ## xtab 2x2
    Cohens_h = interpret_cohens_d(value, rules = rules),
    Odds_ratio = interpret_oddsratio(value, rules = rules, log = FALSE),
    log_Odds_ratio = interpret_oddsratio(value, rules = rules, log = TRUE),
    # TODO:
    # Risk_ratio = ,
    # log_Risk_ratio = ,

    ## xtab dep
    Cohens_g = interpret_cohens_g(value, rules = rules),

    ## anova
    Eta2 = ,
    Eta2_partial = ,
    Eta2_generalized = ,
    Epsilon2 = ,
    Epsilon2_partial = ,
    Omega2 = ,
    Omega2_partial = interpret_omega_squared(value, rules = rules),
    Cohens_f = ,
    Cohens_f_partial = interpret_omega_squared(f_to_eta2(value), rules = rules),
    Cohens_f2 = ,
    Cohens_f2_partial = interpret_omega_squared(f2_to_eta2(value), rules = rules),

    ## Rank
    r_rank_biserial = interpret_r(value, rules = rules),
    VDs_A = interpret_r(value * 2 - 1, rules = rules),
    Kendalls_W = interpret_kendalls_w(value, rules = rules),
    rank_epsilon_squared = ,
    rank_eta_squared = interpret_omega_squared(value, rules = rules),

    # TODO: add cles as a transformation of d?

    ## other
    r = interpret_r(value, rules = rules),
    d = interpret_cohens_d(value, rules = rules)
  )

  attr(x, "rules") <- attr(x$Interpretation, "rules")
  x
}

#' @keywords internal
.interpret <- function(x, rules) {
  if (is.na(x)) {
    return(NA)
  }

  if (length(rules$values) == length(rules$labels)) {
    index <- which.min(abs(x - rules$values))
  } else {
    if (isTRUE(attr(rules, "right"))) {
      check <- x <= rules$values
    } else {
      check <- x < rules$values
    }

    if (any(check)) {
      index <- min(which(check))
    } else {
      index <- length(rules$labels)
    }
  }
  rules$labels[index]
}