1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#' Mahalanobis' *D* (a multivariate Cohen's *d*)
#'
#' Compute effect size indices for standardized difference between two normal
#' multivariate distributions or between one multivariate distribution and a
#' defined point. This is the standardized effect size for Hotelling's \eqn{T^2}
#' test (e.g., `DescTools::HotellingsT2Test()`). *D* is computed as:
#' \cr\cr
#' \deqn{D = \sqrt{(\bar{X}_1-\bar{X}_2-\mu)^T \Sigma_p^{-1} (\bar{X}_1-\bar{X}_2-\mu)}}
#' \cr\cr
#' Where \eqn{\bar{X}_i} are the column means, \eqn{\Sigma_p} is the *pooled*
#' covariance matrix, and \eqn{\mu} is a vector of the null differences for each
#' variable. When there is only one variate, this formula reduces to Cohen's
#' *d*.
#'
#' @inheritParams cohens_d
#' @param x,y A data frame or matrix. Any incomplete observations (with `NA`
#' values) are dropped. `x` can also be a formula (see details) in which case
#' `y` is ignored.
#' @param pooled_cov Should equal covariance be assumed? Currently only
#' `pooled_cov = TRUE` is supported.
#' @param mu A named list/vector of the true difference in means for each
#' variable. Can also be a vector of length 1, which will be recycled.
#' @param ... Not used.
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @details
#' To specify a `x` as a formula:
#' - Two sample case: `DV1 + DV2 ~ group` or `cbind(DV1, DV2) ~ group`
#' - One sample case: `DV1 + DV2 ~ 1` or `cbind(DV1, DV2) ~ 1`
#'
#' @return A data frame with the `Mahalanobis_D` and potentially its CI
#' (`CI_low` and `CI_high`).
#'
#' @seealso [stats::mahalanobis()], [cov_pooled()]
#' @family standardized differences
#'
#' @references
#' - Del Giudice, M. (2017). Heterogeneity coefficients for Mahalanobis' D as a multivariate effect size. Multivariate Behavioral Research, 52(2), 216-221.
#' - Mahalanobis, P. C. (1936). On the generalized distance in statistics. National Institute of Science of India.
#' - Reiser, B. (2001). Confidence intervals for the Mahalanobis distance. Communications in Statistics-Simulation and Computation, 30(1), 37-45.
#'
#' @examples
#' ## Two samples --------------
#' mtcars_am0 <- subset(mtcars, am == 0,
#' select = c(mpg, hp, cyl)
#' )
#' mtcars_am1 <- subset(mtcars, am == 1,
#' select = c(mpg, hp, cyl)
#' )
#'
#' mahalanobis_d(mtcars_am0, mtcars_am1)
#'
#' # Or
#' mahalanobis_d(mpg + hp + cyl ~ am, data = mtcars)
#'
#' mahalanobis_d(mpg + hp + cyl ~ am, data = mtcars, alternative = "two.sided")
#'
#' # Different mu:
#' mahalanobis_d(mpg + hp + cyl ~ am,
#' data = mtcars,
#' mu = c(mpg = -4, hp = 15, cyl = 0)
#' )
#'
#'
#' # D is a multivariate d, so when only 1 variate is provided:
#' mahalanobis_d(hp ~ am, data = mtcars)
#'
#' cohens_d(hp ~ am, data = mtcars)
#'
#'
#' # One sample ---------------------------
#' mahalanobis_d(mtcars[, c("mpg", "hp", "cyl")])
#'
#' # Or
#' mahalanobis_d(mpg + hp + cyl ~ 1,
#' data = mtcars,
#' mu = c(mpg = 15, hp = 5, cyl = 3)
#' )
#'
#' @importFrom stats cov
#' @export
mahalanobis_d <- function(x, y = NULL, data = NULL,
pooled_cov = TRUE, mu = 0,
ci = 0.95, alternative = "greater",
verbose = TRUE, ...) {
# TODO add one sample case DV1 + DV2 ~ 1
# TODO add paired samples case DV1 + DV2 ~ 1 | ID
alternative <- .match.alt(alternative, FALSE)
data <- .get_data_multivariate(x, y, data, verbose = verbose, ...)
x <- data[["x"]]
y <- data[["y"]]
# deal with mu
if (is.vector(mu)) {
if (length(mu) == 1L) {
mu <- rep(mu, length.out = ncol(x))
names(mu) <- colnames(x)
} else if (length(mu) != ncol(x) || is.null(names(mu))) {
insight::format_error("mu must be of length 1 or a named vector/list of length ncol(x).")
}
mu <- as.list(mu)
}
if (!is.list(mu)) {
insight::format_error("mu must be of length 1 or a named vector/list of length ncol(x).")
} else if (!all(names(mu) == colnames(x))) {
insight::format_error("x,y must have the same variables (in the same order)")
} else if (!all(lengths(mu) == 1L) || !all(sapply(mu, is.numeric))) {
insight::format_error("Each element of mu must be a numeric vector of length 1.")
}
mu <- unlist(mu)
if (is.null(y)) {
d <- colMeans(x) - mu
COV <- stats::cov(x)
n <- nrow(x)
p <- ncol(x)
hn <- n
df <- n - p
ff <- hn * (df / (p * (n - 1)))
} else {
d <- colMeans(x) - colMeans(y) - mu
if (!pooled_cov) {
insight::format_warning("Non-pooled cov not supported.")
}
COV <- cov_pooled(x, y, verbose = verbose)
n1 <- nrow(x)
n2 <- nrow(y)
p <- ncol(x)
hn <- (n1 * n2) / (n1 + n2)
df <- (n1 + n2 - p - 1)
ff <- hn * (df / (p * (n1 + n2 - 2)))
}
out <- data.frame(Mahalanobis_D = sqrt(t(d) %*% solve(COV) %*% d))
if (.test_ci(ci)) {
# Add cis
out$CI <- ci
ci.level <- .adjust_ci(ci, alternative)
f <- ff * out[[1]]^2
fs <- .get_ncp_F(f, p, df, ci.level)
out$CI_low <- sqrt(fs[1] / hn)
out$CI_high <- sqrt(fs[2] / hn)
ci_method <- list(method = "ncp", distribution = "F")
out <- .limit_ci(out, alternative, 0, Inf)
} else {
ci_method <- alternative <- NULL
}
class(out) <- c("effectsize_difference", "effectsize_table", "see_effectsize_table", class(out))
.someattributes(out) <- .nlist(
pooled_cov,
mu = sqrt(sum(mu^2)),
ci, ci_method, alternative,
approximate = FALSE
)
return(out)
}
|