File: means_ratio.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (218 lines) | stat: -rw-r--r-- 6,550 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#' Ratio of Means
#'
#' Computes the ratio of two means (also known as the "response ratio"; RR) of
#' **variables on a ratio scale** (with an absolute 0). Pair with any reported
#' [`stats::t.test()`].
#'
#' @param paired If `TRUE`, the values of `x` and `y` are considered as paired.
#'   The correlation between these variables will affect the CIs.
#' @param adjust Should the effect size be bias-corrected? Defaults to `TRUE`;
#'   Advisable for small samples.
#' @param log Should the log-ratio be returned? Defaults to `FALSE`.
#'  Normally distributed and useful for meta-analysis.
#' @inheritParams cohens_d
#'
#' @details
#' The Means Ratio ranges from 0 to \eqn{\infty}, with values smaller than 1
#' indicating that the second mean is larger than the first, values larger than
#' 1 indicating that the second mean is smaller than the first, and values of 1
#' indicating that the means are equal.
#'
#' # Confidence (Compatibility) Intervals (CIs)
#' Confidence intervals are estimated as described by Lajeunesse (2011 & 2015)
#' using the log-ratio standard error assuming a normal distribution. By this
#' method, the log is taken of the ratio of means, which makes this outcome
#' measure symmetric around 0 and yields a corresponding sampling distribution
#' that is closer to normality.
#'
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @return A data frame with the effect size (`Means_ratio` or
#'   `Means_ratio_adjusted`) and their CIs (`CI_low` and `CI_high`).
#'
#' @family standardized differences
#'
#' @note The bias corrected response ratio reported from this function is
#'   derived from Lajeunesse (2015).
#'
#' @examples
#' x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
#' y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
#' means_ratio(x, y)
#' means_ratio(x, y, adjust = FALSE)
#'
#' means_ratio(x, y, log = TRUE)
#'
#'
#' # The ratio is scale invariant, making it a standardized effect size
#' means_ratio(3 * x, 3 * y)
#'
#' @references
#' Lajeunesse, M. J. (2011). On the meta‐analysis of response ratios for studies
#' with correlated and multi‐group designs. Ecology, 92(11), 2049-2055.
#' \doi{10.1890/11-0423.1}
#'
#' Lajeunesse, M. J. (2015). Bias and correction for the log response ratio in
#' ecological meta‐analysis. Ecology, 96(8), 2056-2063. \doi{10.1890/14-2402.1}
#'
#' Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of
#' response ratios in experimental ecology. Ecology, 80(4), 1150–1156.
#' \doi{10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2}
#'
#' @export
means_ratio <- function(x, y = NULL, data = NULL,
                        paired = FALSE, adjust = TRUE, log = FALSE,
                        ci = 0.95, alternative = "two.sided",
                        verbose = TRUE, ...) {
  alternative <- .match.alt(alternative)

  ## Prep data
  out <- .get_data_2_samples(
    x = x, y = y, data = data,
    verbose = verbose,
    paired = paired,
    ...
  )
  x <- out[["x"]]
  y <- out[["y"]]

  if (is.null(y)) {
    insight::format_error("Only one sample provided. y or data must be provided.")
  }

  if (any(x < 0) || any(y < 0)) {
    insight::format_error("x,y must be non-negative (on a ratio scale).")
  }

  # Get summary stats
  m1 <- mean(x)
  sd1 <- stats::sd(x)
  m2 <- mean(y)
  sd2 <- stats::sd(y)

  if (isTRUE(all.equal(m1, 0)) || isTRUE(all.equal(m2, 0))) {
    insight::format_error("Mean(s) equal to equal zero. Unable to calculate means ratio.")
  }


  if (paired) {
    ## ------------------ paired case -------------------
    df1 <- n <- length(x)
    r <- stats::cor(x, y)

    # Calc log RR
    log_val <- .logrom_calc(
      paired = TRUE,
      m1 = m1,
      sd1 = sd1,
      m2 = m2,
      sd2 = sd2,
      n1 = n,
      r = r,
      adjust = adjust
    )
  } else {
    ## ------------------------ 2-sample case -------------------------
    n1 <- length(x)
    n2 <- length(y)
    df1 <- n1 + n2 - 2

    # Calc log RR
    log_val <- .logrom_calc(
      paired = FALSE,
      m1 = m1,
      sd1 = sd1,
      n1 = n1,
      m2 = m2,
      sd2 = sd2,
      n2 = n2,
      adjust = adjust
    )
  }

  if (adjust) {
    out <- data.frame(log_Means_ratio_adjusted = log_val[["log_rom"]])
  } else {
    out <- data.frame(log_Means_ratio = log_val[["log_rom"]])
  }

  if (.test_ci(ci)) {
    # Add cis
    out[["CI"]] <- ci
    ci.level <- .adjust_ci(ci, alternative)
    alpha <- 1 - ci.level

    SE <- sqrt(log_val[["var_rom"]])

    # Normal approx
    interval <- log_val[["log_rom"]] + c(-1, 1) * stats::qnorm(alpha / 2, lower.tail = FALSE) * SE

    ci_method <- list(method = "normal")

    # Central t method
    # interval <- exp(log_val[["log_rom"]] + c(-1, 1) * stats::qt(alpha / 2, df1, lower.tail = FALSE) * SE)

    out[["CI_low"]] <- interval[1]
    out[["CI_high"]] <- interval[2]
    out <- .limit_ci(out, alternative, 0, Inf)
  } else {
    ci_method <- alternative <- NULL
  }

  if (!log) {
    out[[1]] <- exp(out[[1]])
    if (!is.null(ci)) {
      out[c("CI_low", "CI_high")] <- exp(out[c("CI_low", "CI_high")])
    }
    colnames(out)[1] <- gsub("log_", "", colnames(out)[1])
  }

  class(out) <- c("effectsize_difference", "effectsize_table", "see_effectsize_table", class(out))
  .someattributes(out) <- .nlist(
    paired, ci, ci_method, alternative,
    mu = 0,
    approximate = TRUE
  )
  return(out)
}


#' @importFrom stats sd
#' @keywords internal

.logrom_calc <- function(paired = FALSE,
                         m1,
                         sd1,
                         n1,
                         m2,
                         sd2,
                         n2 = n1,
                         r = NULL,
                         adjust = TRUE) {
  if (isTRUE(paired)) {
    yi <- log(m1 / m2)
    vi <-
      sd1^2 / (n1 * m1^2) +
      sd2^2 / (n1 * m2^2) -
      2 * r * sd1 * sd2 / (m1 * m2 * n1)
  } else {
    yi <- log(m1 / m2)
    ### large sample approximation to the sampling variance (does not assume homoscedasticity)
    vi <- sd1^2 / (n1 * m1^2) + sd2^2 / (n2 * m2^2)
  }


  if (isTRUE(adjust)) {
    J <- 0.5 * (sd1^2 / (n1 * m1^2) - sd2^2 / (n2 * m2^2))
    yi <- yi + J

    Jvar <- 0.5 * (sd1^4 / (n1^2 * m1^4) - sd2^4 / (n2^2 * m2^4))
    vi <- vi + Jvar
  }


  list(
    log_rom = yi,
    var_rom = vi
  )
}