File: utils_ci.R

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (151 lines) | stat: -rw-r--r-- 3,357 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# NCP -------------------------

#' @keywords internal
#' @importFrom stats pf qf optim
.get_ncp_F <- function(f, df, df_error, conf.level = 0.9) {
  if (!is.finite(f) || !is.finite(df) || !is.finite(df_error)) {
    return(c(NA, NA))
  }

  alpha <- 1 - conf.level
  probs <- c(alpha / 2, 1 - alpha / 2)

  lambda <- f * df
  ncp <- suppressWarnings(stats::optim(
    par = 1.1 * rep(lambda, 2),
    fn = function(x) {
      p <- stats::pf(q = f, df, df_error, ncp = x)

      abs(max(p) - probs[2]) +
        abs(min(p) - probs[1])
    },
    control = list(abstol = 1e-09)
  ))
  f_ncp <- sort(ncp$par)

  if (f <= stats::qf(probs[1], df, df_error)) {
    f_ncp[2] <- 0
  }

  if (f <= stats::qf(probs[2], df, df_error)) {
    f_ncp[1] <- 0
  }

  return(f_ncp)
}

#' @keywords internal
#' @importFrom stats pt
#' @importFrom stats qt
#' @importFrom stats optim
.get_ncp_t <- function(t, df_error, conf.level = 0.95) {
  # # Note: these aren't actually needed - all t related functions would fail earlier
  # if (!is.finite(t) || !is.finite(df_error)) {
  #   return(c(NA, NA))
  # }

  alpha <- 1 - conf.level
  probs <- c(alpha / 2, 1 - alpha / 2)

  ncp <- suppressWarnings(optim(
    par = 1.1 * rep(t, 2),
    fn = function(x) {
      p <- pt(q = t, df = df_error, ncp = x)

      abs(max(p) - probs[2]) +
        abs(min(p) - probs[1])
    },
    control = list(abstol = 1e-09)
  ))
  t_ncp <- unname(sort(ncp$par))

  return(t_ncp)
}

#' @keywords internals
#' @importFrom stats pchisq qchisq optim
.get_ncp_chi <- function(chi, df, conf.level = 0.95) {
  # # Note: these aren't actually needed - all chisq related functions would fail earlier
  # if (!is.finite(chi) || !is.finite(df)) {
  #   return(c(NA, NA))
  # }

  alpha <- 1 - conf.level
  probs <- c(alpha / 2, 1 - alpha / 2)

  ncp <- suppressWarnings(stats::optim(
    par = 1.1 * rep(chi, 2),
    fn = function(x) {
      p <- stats::pchisq(q = chi, df, ncp = x)

      abs(max(p) - probs[2]) +
        abs(min(p) - probs[1])
    },
    control = list(abstol = 1e-09)
  ))
  chi_ncp <- sort(ncp$par)

  if (chi <= stats::qchisq(probs[1], df)) {
    chi_ncp[2] <- 0
  }

  if (chi <= stats::qchisq(probs[2], df)) {
    chi_ncp[1] <- 0
  }

  chi_ncp
}

# Validators --------------------------------------


#' @keywords internal
.test_ci <- function(ci) {
  if (is.null(ci)) {
    return(FALSE)
  }
  if (!is.numeric(ci) ||
    length(ci) != 1L ||
    ci < 0 ||
    ci > 1) {
    insight::format_error("ci must be a single numeric value between (0, 1)")
  }
  return(TRUE)
}

#' @keywords internal
.adjust_ci <- function(ci, alternative) {
  if (alternative == "two.sided") {
    return(ci)
  }

  2 * ci - 1
}

#' @keywords internal
.limit_ci <- function(out, alternative, lb, ub) {
  if (alternative == "two.sided") {
    return(out)
  }

  if (alternative == "less") {
    out$CI_low <- lb
  } else if (alternative == "greater") {
    out$CI_high <- ub
  }

  out
}

#' @keywords internal
.match.alt <- function(alternative, two.sided = TRUE) {
  if (is.null(alternative)) {
    if (two.sided) {
      return("two.sided")
    } else {
      return("greater")
    }
  }

  match.arg(alternative, c("two.sided", "less", "greater"))
}