1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#' Odds Ratios, Risk Ratios and Cohen's *h* for 2-by-2 Contingency Tables
#'
#' Report with any [`stats::chisq.test()`] or [`stats::fisher.test()`].
#' \cr\cr
#' Note that these are computed with each **column** representing the different
#' groups, and the *first* column representing the treatment group and the
#' *second* column baseline (or control). Effects are given as `treatment /
#' control`. If you wish you use rows as groups you must pass a transposed
#' table, or switch the `x` and `y` arguments.
#'
#'
#' @inheritParams oddsratio_to_d
#' @inheritParams phi
#' @param alternative a character string specifying the alternative hypothesis;
#' Controls the type of CI returned: `"two.sided"` (two-sided CI; default),
#' `"greater"` (one-sided CI) or `"less"` (one-sided CI). Partial matching is
#' allowed (e.g., `"g"`, `"l"`, `"two"`...). See *One-Sided CIs* in
#' [effectsize_CIs].
#' @param ... Ignored
#'
#' @details
#'
#' # Confidence (Compatibility) Intervals (CIs)
#' For Odds ratios, Risk ratios and Cohen's *h*, confidence intervals are
#' estimated using the standard normal parametric method (see Katz et al., 1978;
#' Szumilas, 2010).
#'
#' @inheritSection effectsize_CIs CIs and Significance Tests
#'
#' @return A data frame with the effect size (`Odds_ratio`, `Risk_ratio`
#' (possibly with the prefix `log_`), `Cohens_h`) and its CIs (`CI_low` and
#' `CI_high`).
#'
#' @family effect sizes for contingency table
#'
#'
#' @references
#' - Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
#' - Katz, D. J. S. M., Baptista, J., Azen, S. P., & Pike, M. C. (1978). Obtaining confidence intervals for the risk ratio in cohort studies. Biometrics, 469-474.
#' - Szumilas, M. (2010). Explaining odds ratios. Journal of the Canadian academy of child and adolescent psychiatry, 19(3), 227.
#'
#' @examples
#' data("RCT_table")
#' RCT_table # note groups are COLUMNS
#'
#' oddsratio(RCT_table)
#' oddsratio(RCT_table, alternative = "greater")
#'
#' riskratio(RCT_table)
#'
#' cohens_h(RCT_table)
#'
#' @export
#' @importFrom stats chisq.test qnorm
oddsratio <- function(x, y = NULL, ci = 0.95, alternative = "two.sided", log = FALSE, ...) {
alternative <- .match.alt(alternative)
if (.is_htest_of_type(x, "(Pearson's Chi-squared|Fisher's Exact)", "Chi-squared-test or Fisher's Exact test")) {
return(effectsize(x, type = "or", log = log, ci = ci, alternative = alternative))
} else if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "or", log = log, ci = ci))
}
res <- .get_data_xtabs(x, y)
Obs <- res$observed
if (any(c(colSums(Obs), rowSums(Obs)) == 0L)) {
insight::format_error("Cannot have empty rows/columns in the contingency tables.")
}
if (nrow(Obs) != 2 || ncol(Obs) != 2) {
insight::format_error("Odds ratio only available for 2-by-2 contingency tables")
}
OR <- (Obs[1, 1] / Obs[2, 1]) /
(Obs[1, 2] / Obs[2, 2])
res <- data.frame(Odds_ratio = OR)
if (.test_ci(ci)) {
res$CI <- ci
ci.level <- .adjust_ci(ci, alternative)
alpha <- 1 - ci.level
SE_logodds <- sqrt(sum(1 / Obs))
Z_logodds <- stats::qnorm(alpha / 2, lower.tail = FALSE)
confs <- exp(log(OR) + c(-1, 1) * SE_logodds * Z_logodds)
res$CI_low <- confs[1]
res$CI_high <- confs[2]
ci_method <- list(method = "normal")
res <- .limit_ci(res, alternative, 0, Inf)
} else {
ci_method <- alternative <- NULL
}
if (log) {
res[colnames(res) %in% c("Odds_ratio", "CI_low", "CI_high")] <-
log(res[colnames(res) %in% c("Odds_ratio", "CI_low", "CI_high")])
colnames(res)[1] <- "log_Odds_ratio"
}
class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
attr(res, "ci") <- ci
attr(res, "ci_method") <- ci_method
attr(res, "approximate") <- FALSE
attr(res, "alternative") <- alternative
return(res)
}
#' @rdname oddsratio
#' @export
#' @importFrom stats chisq.test qnorm
riskratio <- function(x, y = NULL, ci = 0.95, alternative = "two.sided", log = FALSE, ...) {
alternative <- .match.alt(alternative)
if (.is_htest_of_type(x, "Pearson's Chi-squared", "Chi-squared-test")) {
return(effectsize(x, type = "rr", log = log, ci = ci, alternative = alternative))
} else if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "rr", log = log, ci = ci, ...))
}
res <- .get_data_xtabs(x, y)
Obs <- res$observed
if (any(c(colSums(Obs), rowSums(Obs)) == 0L)) {
insight::format_error("Cannot have empty rows/columns in the contingency tables.")
}
if (nrow(Obs) != 2 || ncol(Obs) != 2) {
insight::format_error("Risk ratio only available for 2-by-2 contingency tables")
}
n1 <- sum(Obs[, 1])
n2 <- sum(Obs[, 2])
p1 <- Obs[1, 1] / n1
p2 <- Obs[1, 2] / n2
RR <- p1 / p2
res <- data.frame(Risk_ratio = RR)
if (.test_ci(ci)) {
res$CI <- ci
ci.level <- .adjust_ci(ci, alternative)
alpha <- 1 - ci.level
SE_logRR <- sqrt(p1 / ((1 - p1) * n1)) + sqrt(p2 / ((1 - p2) * n2))
Z_logRR <- stats::qnorm(alpha / 2, lower.tail = FALSE)
confs <- exp(log(RR) + c(-1, 1) * SE_logRR * Z_logRR)
res$CI_low <- confs[1]
res$CI_high <- confs[2]
ci_method <- list(method = "normal")
res <- .limit_ci(res, alternative, 0, Inf)
} else {
ci_method <- alternative <- NULL
}
if (log) {
res[colnames(res) %in% c("Risk_ratio", "CI_low", "CI_high")] <-
log(res[colnames(res) %in% c("Risk_ratio", "CI_low", "CI_high")])
colnames(res)[1] <- "log_Risk_ratio"
}
class(res) <- c("effectsize_table", "see_effectsize_table", class(res))
attr(res, "ci") <- ci
attr(res, "ci_method") <- ci_method
attr(res, "approximate") <- FALSE
attr(res, "alternative") <- alternative
return(res)
}
#' @rdname oddsratio
#' @export
#' @importFrom stats qnorm
cohens_h <- function(x, y = NULL, ci = 0.95, alternative = "two.sided", ...) {
alternative <- .match.alt(alternative)
if (.is_htest_of_type(x, "Pearson's Chi-squared", "Chi-squared-test")) {
return(effectsize(x, type = "cohens_h", ci = ci, alternative = alternative))
} else if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "cohens_h", ci = ci, ...))
}
res <- .get_data_xtabs(x, y)
Obs <- res$observed
if (any(c(colSums(Obs), rowSums(Obs)) == 0L)) {
insight::format_error("Cannot have empty rows/columns in the contingency tables.")
}
if (nrow(Obs) != 2 || ncol(Obs) != 2) {
insight::format_error("Cohen's h only available for 2-by-2 contingency tables")
}
n1 <- sum(Obs[, 1])
n2 <- sum(Obs[, 2])
p1 <- Obs[1, 1] / n1
p2 <- Obs[1, 2] / n2
H <- 2 * asin(sqrt(p1)) - 2 * asin(sqrt(p2))
out <- data.frame(Cohens_h = H)
if (.test_ci(ci)) {
out$CI <- ci
ci.level <- .adjust_ci(ci, alternative)
alpha <- 1 - ci.level
se_arcsin <- sqrt(0.25 * (1 / n1 + 1 / n2))
Zc <- stats::qnorm(alpha / 2, lower.tail = FALSE)
out$CI_low <- H - Zc * (2 * se_arcsin)
out$CI_high <- H + Zc * (2 * se_arcsin)
ci_method <- list(method = "normal")
out <- .limit_ci(out, alternative, -pi, pi)
} else {
ci_method <- alternative <- NULL
}
class(out) <- c("effectsize_table", "see_effectsize_table", class(out))
attr(out, "ci") <- ci
attr(out, "ci_method") <- ci_method
attr(out, "approximate") <- FALSE
attr(out, "alternative") <- alternative
return(out)
}
|