1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/interpret_r.R
\name{interpret_r}
\alias{interpret_r}
\alias{interpret_phi}
\alias{interpret_cramers_v}
\alias{interpret_rank_biserial}
\title{Interpret Correlation Coefficient}
\usage{
interpret_r(r, rules = "funder2019", ...)
interpret_phi(r, rules = "funder2019", ...)
interpret_cramers_v(r, rules = "funder2019", ...)
interpret_rank_biserial(r, rules = "funder2019", ...)
}
\arguments{
\item{r}{Value or vector of correlation coefficient.}
\item{rules}{Can be \code{"funder2019"} (default), \code{"gignac2016"}, \code{"cohen1988"},
\code{"evans1996"}, \code{"lovakov2021"} or a custom set of \code{\link[=rules]{rules()}}.}
\item{...}{Not directly used.}
}
\description{
Interpret Correlation Coefficient
}
\note{
As \eqn{\phi}{\phi} can be larger than 1 - it is recommended to compute
and interpret Cramer's \emph{V} instead.
}
\section{Rules}{
Rules apply positive and negative \emph{r} alike.
\itemize{
\item Funder & Ozer (2019) (\code{"funder2019"}; default)
\itemize{
\item \strong{r < 0.05} - Tiny
\item \strong{0.05 <= r < 0.1} - Very small
\item \strong{0.1 <= r < 0.2} - Small
\item \strong{0.2 <= r < 0.3} - Medium
\item \strong{0.3 <= r < 0.4} - Large
\item \strong{r >= 0.4} - Very large
}
\item Gignac & Szodorai (2016) (\code{"gignac2016"})
\itemize{
\item \strong{r < 0.1} - Very small
\item \strong{0.1 <= r < 0.2} - Small
\item \strong{0.2 <= r < 0.3} - Moderate
\item \strong{r >= 0.3} - Large
}
\item Cohen (1988) (\code{"cohen1988"})
\itemize{
\item \strong{r < 0.1} - Very small
\item \strong{0.1 <= r < 0.3} - Small
\item \strong{0.3 <= r < 0.5} - Moderate
\item \strong{r >= 0.5} - Large
}
\item Lovakov & Agadullina (2021) (\code{"lovakov2021"})
\itemize{
\item \strong{r < 0.12} - Very small
\item \strong{0.12 <= r < 0.24} - Small
\item \strong{0.24 <= r < 0.41} - Moderate
\item \strong{r >= 0.41} - Large
}
\item Evans (1996) (\code{"evans1996"})
\itemize{
\item \strong{r < 0.2} - Very weak
\item \strong{0.2 <= r < 0.4} - Weak
\item \strong{0.4 <= r < 0.6} - Moderate
\item \strong{0.6 <= r < 0.8} - Strong
\item \strong{r >= 0.8} - Very strong
}
}
}
\examples{
interpret_r(.015)
interpret_r(c(.5, -.02))
interpret_r(.3, rules = "lovakov2021")
}
\references{
\itemize{
\item Lovakov, A., & Agadullina, E. R. (2021). Empirically Derived Guidelines for
Effect Size Interpretation in Social Psychology. European Journal of Social
Psychology.
\item Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in
psychological research: sense and nonsense. Advances in Methods and Practices
in Psychological Science.
\item Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for
individual differences researchers. Personality and individual differences,
102, 74-78.
\item Cohen, J. (1988). Statistical power analysis for the behavioral sciences
(2nd Ed.). New York: Routledge.
\item Evans, J. D. (1996). Straightforward statistics for the behavioral
sciences. Thomson Brooks/Cole Publishing Co.
}
}
\seealso{
Page 88 of APA's 6th Edition.
}
\keyword{interpreters}
|