File: phi.Rd

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (198 lines) | stat: -rw-r--r-- 7,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xtab_corr.R
\name{phi}
\alias{phi}
\alias{cramers_v}
\alias{tschuprows_t}
\alias{cohens_w}
\alias{fei}
\alias{pearsons_c}
\title{\eqn{\phi} and Other Contingency Tables Correlations}
\usage{
phi(x, y = NULL, adjust = TRUE, ci = 0.95, alternative = "greater", ...)

cramers_v(x, y = NULL, adjust = TRUE, ci = 0.95, alternative = "greater", ...)

tschuprows_t(x, y = NULL, ci = 0.95, alternative = "greater", ...)

cohens_w(
  x,
  y = NULL,
  p = rep(1, length(x)),
  ci = 0.95,
  alternative = "greater",
  ...
)

fei(x, p = rep(1, length(x)), ci = 0.95, alternative = "greater", ...)

pearsons_c(
  x,
  y = NULL,
  p = rep(1, length(x)),
  ci = 0.95,
  alternative = "greater",
  ...
)
}
\arguments{
\item{x}{a numeric vector or matrix. \code{x} and \code{y} can also
    both be factors.}

\item{y}{a numeric vector; ignored if \code{x} is a matrix.  If
    \code{x} is a factor, \code{y} should be a factor of the same length.}

\item{adjust}{Should the effect size be bias-corrected? Defaults to \code{TRUE};
Advisable for small samples and large tables.}

\item{ci}{Confidence Interval (CI) level}

\item{alternative}{a character string specifying the alternative hypothesis;
Controls the type of CI returned: \code{"greater"} (default) or \code{"less"}
(one-sided CI), or \code{"two.sided"} (default, two-sided CI). Partial matching
is allowed (e.g., \code{"g"}, \code{"l"}, \code{"two"}...). See \emph{One-Sided CIs} in
\link{effectsize_CIs}.}

\item{...}{Ignored.}

\item{p}{a vector of probabilities of the same length as \code{x}.
    An error is given if any entry of \code{p} is negative.}
}
\value{
A data frame with the effect size (\code{Cramers_v}, \code{phi} (possibly with
the suffix \verb{_adjusted}), \code{Cohens_w}, \code{Fei}) and its CIs (\code{CI_low} and
\code{CI_high}).
}
\description{
Compute phi (\eqn{\phi}), Cramer's \emph{V}, Tschuprow's \emph{T}, Cohen's \emph{w},
\ifelse{latex}{\eqn{Fei}}{פ (Fei)}, Pearson's contingency coefficient for
contingency tables or goodness-of-fit. Pair with any reported
\code{\link[stats:chisq.test]{stats::chisq.test()}}.
}
\details{
phi (\eqn{\phi}), Cramer's \emph{V}, Tschuprow's \emph{T}, Cohen's \emph{w}, and Pearson's
\emph{C} are effect sizes for tests of independence in 2D contingency tables. For
2-by-2 tables, phi, Cramer's \emph{V}, Tschuprow's \emph{T}, and Cohen's \emph{w} are
identical, and are equal to the simple correlation between two dichotomous
variables, ranging between  0 (no dependence) and 1 (perfect dependence).
\cr\cr
For larger tables, Cramer's \emph{V}, Tschuprow's \emph{T} or Pearson's \emph{C} should be
used, as they are bounded between 0-1. (Cohen's \emph{w} can also be used, but
since it is not bounded at 1 (can be larger) its interpretation is more
difficult.) For square table, Cramer's \emph{V} and Tschuprow's \emph{T} give the same
results, but for non-square tables Tschuprow's \emph{T} is more conservative:
while \emph{V} will be 1 if either columns are fully dependent on rows (for each
column, there is only one non-0 cell) \emph{or} rows are fully dependent on
columns, \emph{T} will only be 1 if both are true.
\cr \cr
For goodness-of-fit in 1D tables Cohen's \emph{W}, \ifelse{latex}{\eqn{Fei}}{פ (Fei)}
or Pearson's \emph{C} can be used. Cohen's \emph{w} has no upper bound (can be
arbitrarily large, depending on the expected distribution). \emph{Fei} is an
adjusted Cohen's \emph{w}, accounting for the expected distribution, making it
bounded between 0-1. Pearson's \emph{C} is also bounded between 0-1.
\cr \cr
To summarize, for correlation-like effect sizes, we recommend:
\itemize{
\item For a 2x2 table, use \code{phi()}
\item For larger tables, use \code{cramers_v()}
\item For goodness-of-fit, use \code{fei()}
}
}
\section{Confidence (Compatibility) Intervals (CIs)}{
Unless stated otherwise, confidence (compatibility) intervals (CIs) are
estimated using the noncentrality parameter method (also called the "pivot
method"). This method finds the noncentrality parameter ("\emph{ncp}") of a
noncentral \emph{t}, \emph{F}, or \eqn{\chi^2} distribution that places the observed
\emph{t}, \emph{F}, or \eqn{\chi^2} test statistic at the desired probability point of
the distribution. For example, if the observed \emph{t} statistic is 2.0, with 50
degrees of freedom, for which cumulative noncentral \emph{t} distribution is \emph{t} =
2.0 the .025 quantile (answer: the noncentral \emph{t} distribution with \emph{ncp} =
.04)? After estimating these confidence bounds on the \emph{ncp}, they are
converted into the effect size metric to obtain a confidence interval for the
effect size (Steiger, 2004).
\cr\cr
For additional details on estimation and troubleshooting, see \link{effectsize_CIs}.
}

\section{CIs and Significance Tests}{
"Confidence intervals on measures of effect size convey all the information
in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility)
intervals and p values are complementary summaries of parameter uncertainty
given the observed data. A dichotomous hypothesis test could be performed
with either a CI or a p value. The 100 (1 - \eqn{\alpha})\% confidence
interval contains all of the parameter values for which \emph{p} > \eqn{\alpha}
for the current data and model. For example, a 95\% confidence interval
contains all of the values for which p > .05.
\cr\cr
Note that a confidence interval including 0 \emph{does not} indicate that the null
(no effect) is true. Rather, it suggests that the observed data together with
the model and its assumptions combined do not provided clear evidence against
a parameter value of 0 (same as with any other value in the interval), with
the level of this evidence defined by the chosen \eqn{\alpha} level (Rafi &
Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no
effect, additional judgments about what parameter values are "close enough"
to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser,
1996).
}

\examples{

## 2-by-2 tables
## -------------
data("RCT_table")
RCT_table # note groups are COLUMNS

phi(RCT_table)
pearsons_c(RCT_table)



## Larger tables
## -------------
data("Music_preferences")
Music_preferences

cramers_v(Music_preferences)

cohens_w(Music_preferences)

pearsons_c(Music_preferences)



## Goodness of fit
## ---------------
data("Smoking_FASD")
Smoking_FASD

fei(Smoking_FASD)

cohens_w(Smoking_FASD)

pearsons_c(Smoking_FASD)

# Use custom expected values:
fei(Smoking_FASD, p = c(0.015, 0.010, 0.975))

cohens_w(Smoking_FASD, p = c(0.015, 0.010, 0.975))

pearsons_c(Smoking_FASD, p = c(0.015, 0.010, 0.975))
}
\references{
\itemize{
\item Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
\item Johnston, J. E., Berry, K. J., & Mielke Jr, P. W. (2006). Measures of
effect size for chi-squared and likelihood-ratio goodness-of-fit tests.
Perceptual and motor skills, 103(2), 412-414.
\item Rosenberg, M. S. (2010). A generalized formula for converting chi-square
tests to effect sizes for meta-analysis. PloS one, 5(4), e10059.
}
}
\seealso{
\code{\link[=chisq_to_phi]{chisq_to_phi()}} for details regarding estimation and CIs.

Other effect sizes for contingency table: 
\code{\link{cohens_g}()},
\code{\link{oddsratio}()}
}
\concept{effect sizes for contingency table}