1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xtab_corr.R
\name{phi}
\alias{phi}
\alias{cramers_v}
\alias{tschuprows_t}
\alias{cohens_w}
\alias{fei}
\alias{pearsons_c}
\title{\eqn{\phi} and Other Contingency Tables Correlations}
\usage{
phi(x, y = NULL, adjust = TRUE, ci = 0.95, alternative = "greater", ...)
cramers_v(x, y = NULL, adjust = TRUE, ci = 0.95, alternative = "greater", ...)
tschuprows_t(x, y = NULL, ci = 0.95, alternative = "greater", ...)
cohens_w(
x,
y = NULL,
p = rep(1, length(x)),
ci = 0.95,
alternative = "greater",
...
)
fei(x, p = rep(1, length(x)), ci = 0.95, alternative = "greater", ...)
pearsons_c(
x,
y = NULL,
p = rep(1, length(x)),
ci = 0.95,
alternative = "greater",
...
)
}
\arguments{
\item{x}{a numeric vector or matrix. \code{x} and \code{y} can also
both be factors.}
\item{y}{a numeric vector; ignored if \code{x} is a matrix. If
\code{x} is a factor, \code{y} should be a factor of the same length.}
\item{adjust}{Should the effect size be bias-corrected? Defaults to \code{TRUE};
Advisable for small samples and large tables.}
\item{ci}{Confidence Interval (CI) level}
\item{alternative}{a character string specifying the alternative hypothesis;
Controls the type of CI returned: \code{"greater"} (default) or \code{"less"}
(one-sided CI), or \code{"two.sided"} (default, two-sided CI). Partial matching
is allowed (e.g., \code{"g"}, \code{"l"}, \code{"two"}...). See \emph{One-Sided CIs} in
\link{effectsize_CIs}.}
\item{...}{Ignored.}
\item{p}{a vector of probabilities of the same length as \code{x}.
An error is given if any entry of \code{p} is negative.}
}
\value{
A data frame with the effect size (\code{Cramers_v}, \code{phi} (possibly with
the suffix \verb{_adjusted}), \code{Cohens_w}, \code{Fei}) and its CIs (\code{CI_low} and
\code{CI_high}).
}
\description{
Compute phi (\eqn{\phi}), Cramer's \emph{V}, Tschuprow's \emph{T}, Cohen's \emph{w},
\ifelse{latex}{\eqn{Fei}}{פ (Fei)}, Pearson's contingency coefficient for
contingency tables or goodness-of-fit. Pair with any reported
\code{\link[stats:chisq.test]{stats::chisq.test()}}.
}
\details{
phi (\eqn{\phi}), Cramer's \emph{V}, Tschuprow's \emph{T}, Cohen's \emph{w}, and Pearson's
\emph{C} are effect sizes for tests of independence in 2D contingency tables. For
2-by-2 tables, phi, Cramer's \emph{V}, Tschuprow's \emph{T}, and Cohen's \emph{w} are
identical, and are equal to the simple correlation between two dichotomous
variables, ranging between 0 (no dependence) and 1 (perfect dependence).
\cr\cr
For larger tables, Cramer's \emph{V}, Tschuprow's \emph{T} or Pearson's \emph{C} should be
used, as they are bounded between 0-1. (Cohen's \emph{w} can also be used, but
since it is not bounded at 1 (can be larger) its interpretation is more
difficult.) For square table, Cramer's \emph{V} and Tschuprow's \emph{T} give the same
results, but for non-square tables Tschuprow's \emph{T} is more conservative:
while \emph{V} will be 1 if either columns are fully dependent on rows (for each
column, there is only one non-0 cell) \emph{or} rows are fully dependent on
columns, \emph{T} will only be 1 if both are true.
\cr \cr
For goodness-of-fit in 1D tables Cohen's \emph{W}, \ifelse{latex}{\eqn{Fei}}{פ (Fei)}
or Pearson's \emph{C} can be used. Cohen's \emph{w} has no upper bound (can be
arbitrarily large, depending on the expected distribution). \emph{Fei} is an
adjusted Cohen's \emph{w}, accounting for the expected distribution, making it
bounded between 0-1. Pearson's \emph{C} is also bounded between 0-1.
\cr \cr
To summarize, for correlation-like effect sizes, we recommend:
\itemize{
\item For a 2x2 table, use \code{phi()}
\item For larger tables, use \code{cramers_v()}
\item For goodness-of-fit, use \code{fei()}
}
}
\section{Confidence (Compatibility) Intervals (CIs)}{
Unless stated otherwise, confidence (compatibility) intervals (CIs) are
estimated using the noncentrality parameter method (also called the "pivot
method"). This method finds the noncentrality parameter ("\emph{ncp}") of a
noncentral \emph{t}, \emph{F}, or \eqn{\chi^2} distribution that places the observed
\emph{t}, \emph{F}, or \eqn{\chi^2} test statistic at the desired probability point of
the distribution. For example, if the observed \emph{t} statistic is 2.0, with 50
degrees of freedom, for which cumulative noncentral \emph{t} distribution is \emph{t} =
2.0 the .025 quantile (answer: the noncentral \emph{t} distribution with \emph{ncp} =
.04)? After estimating these confidence bounds on the \emph{ncp}, they are
converted into the effect size metric to obtain a confidence interval for the
effect size (Steiger, 2004).
\cr\cr
For additional details on estimation and troubleshooting, see \link{effectsize_CIs}.
}
\section{CIs and Significance Tests}{
"Confidence intervals on measures of effect size convey all the information
in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility)
intervals and p values are complementary summaries of parameter uncertainty
given the observed data. A dichotomous hypothesis test could be performed
with either a CI or a p value. The 100 (1 - \eqn{\alpha})\% confidence
interval contains all of the parameter values for which \emph{p} > \eqn{\alpha}
for the current data and model. For example, a 95\% confidence interval
contains all of the values for which p > .05.
\cr\cr
Note that a confidence interval including 0 \emph{does not} indicate that the null
(no effect) is true. Rather, it suggests that the observed data together with
the model and its assumptions combined do not provided clear evidence against
a parameter value of 0 (same as with any other value in the interval), with
the level of this evidence defined by the chosen \eqn{\alpha} level (Rafi &
Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no
effect, additional judgments about what parameter values are "close enough"
to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser,
1996).
}
\examples{
## 2-by-2 tables
## -------------
data("RCT_table")
RCT_table # note groups are COLUMNS
phi(RCT_table)
pearsons_c(RCT_table)
## Larger tables
## -------------
data("Music_preferences")
Music_preferences
cramers_v(Music_preferences)
cohens_w(Music_preferences)
pearsons_c(Music_preferences)
## Goodness of fit
## ---------------
data("Smoking_FASD")
Smoking_FASD
fei(Smoking_FASD)
cohens_w(Smoking_FASD)
pearsons_c(Smoking_FASD)
# Use custom expected values:
fei(Smoking_FASD, p = c(0.015, 0.010, 0.975))
cohens_w(Smoking_FASD, p = c(0.015, 0.010, 0.975))
pearsons_c(Smoking_FASD, p = c(0.015, 0.010, 0.975))
}
\references{
\itemize{
\item Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
\item Johnston, J. E., Berry, K. J., & Mielke Jr, P. W. (2006). Measures of
effect size for chi-squared and likelihood-ratio goodness-of-fit tests.
Perceptual and motor skills, 103(2), 412-414.
\item Rosenberg, M. S. (2010). A generalized formula for converting chi-square
tests to effect sizes for meta-analysis. PloS one, 5(4), e10059.
}
}
\seealso{
\code{\link[=chisq_to_phi]{chisq_to_phi()}} for details regarding estimation and CIs.
Other effect sizes for contingency table:
\code{\link{cohens_g}()},
\code{\link{oddsratio}()}
}
\concept{effect sizes for contingency table}
|