File: effectsize_API.Rmd

package info (click to toggle)
r-cran-effectsize 0.8.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,404 kB
  • sloc: sh: 17; makefile: 2
file content (274 lines) | stat: -rw-r--r-- 9,246 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
title: "Support Functions for Model Extensions"
output: 
  rmarkdown::html_vignette:
    toc: true
    fig_width: 10.08
    fig_height: 6
tags: [r, effect size, ANOVA, standardization, standardized coefficients]
vignette: >
  \usepackage[utf8]{inputenc}
  %\VignetteIndexEntry{Support Functions for Model Extensions}
  %\VignetteEngine{knitr::rmarkdown}
editor_options: 
  chunk_output_type: console
bibliography: bibliography.bib
---

```{r message=FALSE, warning=FALSE, include=FALSE}
library(knitr)
knitr::opts_chunk$set(
  comment = ">",
  warning = FALSE,
  message = FALSE
)
options(digits = 2)
options(knitr.kable.NA = "")

set.seed(333)
```

```{r}
library(effectsize)
```

## Supporting ANOVA Effect Sizes

To add support for you model, create a new `.anova_es()` method function. This functions should generally do 3 things:

1. Build a data frame with all the required information.
2. Pass the data frame to one of the 3 functions.
3. Set some attributes to the output.

### Simple ANOVA tables

The input data frame must have these columns:
- `Parameter` (char) - The name of the parameter or, more often, the term.
- `Sum_Squares` (num) - The sum of squares.
- `df` (num) - The degrees of freedom associated with the `Sum_Squares`.
- `Mean_Square_residuals` (num; *optional*) - if *not* present, is calculated as `Sum_Squares / df`.
(Any other column is ignored.)

And exactly *1* row Where `Parameter` is `Residual`.

Optionally, one of the rows can have a `(Intercept)` value for `Parameter`.

An example of a minimally valid data frame:

```{r}
min_aov <- data.frame(
  Parameter = c("(Intercept)", "A", "B", "Residuals"),
  Sum_Squares = c(30, 40, 10, 100),
  df = c(1, 1, 2, 50)
)
```

Pass the data frame to `.es_aov_simple()`:

```{r}
.es_aov_simple(
  min_aov,
  type = "eta", partial = TRUE, generalized = FALSE,
  include_intercept = FALSE,
  ci = 0.95, alternative = "greater",
  verbose = TRUE
)
```

The output is a data frame with the columns: `Parameter`, the effect size, and (optionally) `CI` + `CI_low` + `CI_high`,

And with the following attributes: `generalized`, `ci`, `alternative`, `anova_type` (`NA` or `NULL`), `approximate`.

You can then set the `anova_type` attribute to {1, 2, 3, or `NA`} and return the output.

### ANOVA Tables with Multiple Error Strata

(e.g., `aovlist` models.)

The input data frame must have these columns:

- `Group` (char) - The strata
- `Parameter` (char)
- `Sum_Squares` (num)
- `df` (num)
- `Mean_Square_residuals` (num; *optional*)

And exactly *1* row ***per `Group`*** Where `Parameter` is `Residual`.

Optionally, one of the rows can have a `(Intercept)` value for `Parameter`.

An example of a minimally valid data frame:

```{r}
min_aovlist <- data.frame(
  Group = c("S", "S", "S:A", "S:A"),
  Parameter = c("(Intercept)", "Residuals", "A", "Residuals"),
  Sum_Squares = c(34, 21, 34, 400),
  df = c(1, 12, 4, 30)
)
```

Pass the data frame to `.es_aov_strata()`, along with a list of predictors (including the stratifying variables) to the `DV_names` argument:

```{r}
.es_aov_strata(
  min_aovlist,
  DV_names = c("S", "A"),
  type = "omega", partial = TRUE, generalized = FALSE,
  ci = 0.95, alternative = "greater",
  verbose = TRUE,
  include_intercept = TRUE
)
```

The output is a data frame with the columns: `Group`, `Parameter`, the effect size, and (optionally) `CI` + `CI_low` + `CI_high`,

And with the following attributes: `generalized`, `ci`, `alternative`, `approximate`.

You can then set the `anova_type` attribute to {1, 2, 3, or `NA`} and return the output.


### Approximate Effect sizes

When *sums of squares* cannot be extracted, we can still get *approximate* effect sizes based on the `F_to_eta2()` family of functions.

The input data frame must have these columns:

- `Parameter` (char)
- `F` (num) - The *F* test statistic.
- `df` (num) - effect degrees of freedom.
- (Can also have a `t` col instead, in which case `df` is set to 1, and `F` is `t^2`).
- `df_error` (num) - error degrees of freedom.

Optionally, one of the rows can have `(Intercept)` as the `Parameter`.

An example of a minimally valid data frame:

```{r}
min_anova <- data.frame(
  Parameter = c("(Intercept)", "A", "B"),
  F = c(4, 7, 0.7),
  df = c(1, 1, 2),
  df_error = 34
)
```

Pass the table to `.es_aov_table()`:

```{r}
.es_aov_table(
  min_anova,
  type = "eta", partial = TRUE, generalized = FALSE,
  include_intercept = FALSE,
  ci = 0.95, alternative = "greater",
  verbose = TRUE
)
```

The output is a data frame with the columns: `Parameter`, the effect size, and (optionally) `CI` + `CI_low` + `CI_high`,

And with the following attributes: `generalized`, `ci`, `alternative`, `approximate`.

You can then set the `anova_type` attribute to {1, 2, 3, or `NA`} and return the output, and optionally the `approximate` attribute, and return the output.

### *Example*

Let's fit a simple linear model and change its class:

```{r}
mod <- lm(mpg ~ factor(cyl) + am, mtcars)

class(mod) <- "superMODEL"
```

We now need a new `.anova_es.superMODEL` function:

```{r}
.anova_es.superMODEL <- function(model, ...) {
  # Get ANOVA table
  anov <- suppressWarnings(stats:::anova.lm(model))
  anov <- as.data.frame(anov)

  # Clean up
  anov[["Parameter"]] <- rownames(anov)
  colnames(anov)[2:1] <- c("Sum_Squares", "df")

  # Pass
  out <- .es_aov_simple(anov, ...)

  # Set attribute
  attr(out, "anova_type") <- 1

  out
}
```

```{r, echo=FALSE}
# This is for: https://github.com/easystats/easystats/issues/348
.anova_es.superMODEL <<- .anova_es.superMODEL
```


And... that's it! Our new `superMODEL` class of models is fully supported!

```{r}
eta_squared(mod)

eta_squared(mod, partial = FALSE)

omega_squared(mod)

# Etc...
```


<!-- ## Supporting Model Re-Fitting with Standardized Data -->

<!-- `effectsize::standardize.default()` should support your model if you have methods for: -->

<!-- 1. `{insight}` functions. -->
<!-- 2. An `update()` method that can take the model and a data frame via the `data = ` argument. -->

<!-- Or you can make your own `standardize.my_class()` function, DIY-style (possibly using `datawizard::standardize.data.frame()` or `datawizard::standardize.numeric()`). This function should return a fiffed model of the same class as the input model. -->

<!-- ## Supporting Standardized Parameters -->

<!-- `standardize_parameters.default()` offers a few methods of parameter standardization: -->

<!-- - For `method = "refit"` all you need is to have `effectsize::standardize()` support (see above) as well as `parameters::model_parameters()`.   -->
<!-- - ***API for post-hoc methods coming soon...***   -->

<!-- `standardize_parameters.default()` should support your model if it is already supported by `{parameters}` and `{insight}`. -->

<!-- - For `method = "refit"`, to have `effectsize::standardize()` support (see above). -->
<!-- - For the post-hoc methods, you will need to have a method for `standardize_info()` (or use the default method). See next section. -->

<!-- Or you can make your own `standardize_parameters.my_class()` and/or `standardize_info.my_class()` functions. -->

<!-- ## Extracting Post-Hoc Standardization Information (`standardize_info`) -->

<!-- The `standardize_info()` function computes the standardized units needed for standardization; In order to standardize some slope $b_{xi}$, we need to multiply it by a scaling factor: -->

<!-- $$b^*_{xi} = \frac{\text{Deviation}_{xi}}{\text{Deviation}_{y}}\times b_{xi}$$ -->

<!-- These "deviations" are univariate scaling factors of the response and the specific parameter (usin its corresponding feature in the design matrix). Most often these are a single standard deviation (*SD*), but depending on the `robust` and `two_sd` arguments, these can be also be two *MAD*s, etc. -->

<!-- Let's look at an example: -->

<!-- ```{r} -->
<!-- m <- lm(mpg ~ factor(cyl) * am, data = mtcars) -->

<!-- standardize_info(m) -->
<!-- ``` -->

<!-- - The first 4 columns (`Parameter`, `Type`, `Link`, `Secondary_Parameter`) are taken from `parameters::parameters_type()`.   -->
<!-- - The `EffectSize_Type` column is not used here, but is used in the the `{report}` package.   -->
<!-- - `Deviation_Response_Basic` and `Deviation_Response_Smart` correspond to the $\text{Deviation}_{y}$ scalar using two different methods of post-hoc standardization (see `standardize_parameters()` docs for more details).   -->
<!--     - Note then when the response is not standardized (either due to `standardize_parameters(include_response = FALSE)` or because the model uses a non-continuous response), both methods are fixed at **1** (i.e., no standardization with respect to the outcome).   -->
<!-- - `Deviation_Basic` and `Deviation_Smart` correspond to the $\text{Deviation}_{xi}$ scaler using two different methods of post-hoc standardization. -->

<!-- This information is then used by the `standardize_parameters()` to standardize the parameters. -->
    

# References