1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#' Convert Standardized Differences to Common Language Effect Sizes
#'
#' @param d,rb A numeric vector of Cohen's d / rank-biserial correlation *or*
#' the output from [cohens_d()] / [rank_biserial()].
#'
#' @details
#' This function use the following formulae for Cohen's *d*:
#' \deqn{Pr(superiority) = \Phi(d/\sqrt{2})}{Pr(superiority) = pnorm(d / sqrt(2))}
#' \cr
#' \deqn{\textrm{Cohen's } U_3 = \Phi(d)}{U3 = pnorm(d)}
#' \cr
#' \deqn{\textrm{Cohen's } U_2 = \Phi(|d|/2)}{U2 = pnorm(abs(d)/2)}
#' \cr
#' \deqn{\textrm{Cohen's } U_1 = (2\times U_2 - 1)/U_2}{U1 = (2 * U2 - 1) / U2}
#' \cr
#' \deqn{Overlap = 2 \times \Phi(-|d|/2)}{Overlap = 2 * pnorm(-abs(d) / 2)}
#' \cr
#' And the following for the rank-biserial correlation:
#' \deqn{Pr(superiority) = (r_{rb} + 1)/2}{Pr(superiority) = (rb + 1)/2}
#' \cr
#' \eqn{WMW_{Odds} = Pr(superiority) / (1 - Pr(superiority))}
#'
#' @return A list of `Cohen's U3`, `Overlap`, `Pr(superiority)`, a
#' numeric vector of `Pr(superiority)`, or a data frame, depending
#' on the input.
#'
#' @note
#' For *d*, these calculations assume that the populations have equal variance
#' and are normally distributed.
#'
#' Vargha and Delaney's *A* is an alias for the non-parametric *probability of
#' superiority*.
#'
#' @seealso [cohens_u3()] for descriptions of the effect sizes (also,
#' [cohens_d()], [rank_biserial()]).
#' @family convert between effect sizes
#'
#' @references
#' - Cohen, J. (1977). Statistical power analysis for the behavioral sciences.
#' New York: Routledge.
#'
#' - Reiser, B., & Faraggi, D. (1999). Confidence intervals for the overlapping
#' coefficient: the normal equal variance case. Journal of the Royal Statistical
#' Society, 48(3), 413-418.
#'
#' - Ruscio, J. (2008). A probability-based measure of effect size: robustness
#' to base rates and other factors. Psychological methods, 13(1), 19–30.
#'
#' @name diff_to_cles
#' @aliases d_to_cles rb_to_cles
# p_superiority ------------------------------------------------------
#' @export
#' @rdname diff_to_cles
d_to_p_superiority <- function(d) {
UseMethod("d_to_p_superiority")
}
#' @export
d_to_p_superiority.numeric <- function(d) {
stats::pnorm(d / sqrt(2))
}
#' @export
#' @rdname diff_to_cles
rb_to_p_superiority <- function(rb) {
UseMethod("rb_to_p_superiority")
}
#' @export
rb_to_p_superiority.numeric <- function(rb) {
(rb + 1) / 2
}
#' @export
#' @rdname diff_to_cles
rb_to_vda <- rb_to_p_superiority
# U2 ----------------------------------------------------------------------
#' @export
#' @rdname diff_to_cles
d_to_u2 <- function(d) {
UseMethod("d_to_u2")
}
#' @export
d_to_u2.numeric <- function(d) {
stats::pnorm(abs(d) / 2)
}
# U1 ----------------------------------------------------------------------
#' @export
#' @rdname diff_to_cles
d_to_u1 <- function(d) {
UseMethod("d_to_u1")
}
#' @export
d_to_u1.numeric <- function(d) {
P <- d_to_u2(d)
(2 * P - 1) / P
}
# U3 ----------------------------------------------------------------------
#' @export
#' @rdname diff_to_cles
d_to_u3 <- function(d) {
UseMethod("d_to_u3")
}
#' @export
d_to_u3.numeric <- function(d) {
stats::pnorm(d)
}
# Overlap -----------------------------------------------------------------
#' @export
#' @rdname diff_to_cles
d_to_overlap <- function(d) {
UseMethod("d_to_overlap")
}
#' @export
d_to_overlap.numeric <- function(d) {
2 * stats::pnorm(-abs(d) / 2)
}
# wmw_odds ----------------------------------------------------------------
#' @export
#' @rdname diff_to_cles
rb_to_wmw_odds <- function(rb) {
UseMethod("rb_to_wmw_odds")
}
#' @export
rb_to_wmw_odds.numeric <- function(rb) {
probs_to_odds(rb_to_p_superiority(rb))
}
#' @export
rb_to_wmw_odds.effectsize_difference <- function(rb) {
if (!any(colnames(rb) == "r_rank_biserial")) {
insight::format_error("Common language effect size only applicable rank-biserial correlation.")
}
cols_to_conv <- colnames(rb) %in% c("r_rank_biserial", "CI_low", "CI_high")
out <- rb
out[cols_to_conv] <- lapply(out[cols_to_conv], rb_to_wmw_odds)
colnames(out)[1] <- "WMW_odds"
class(out) <- c("effectsize_table", class(out))
# TODO
# class(out) <- c("effectsize_difference", "effectsize_table", "see_effectsize_table", class(out))
attr(out, "table_footer") <- "Non-parametric CLES"
out
}
# From Cohen's d ----------------------------------------------------------
#' @export
d_to_p_superiority.effectsize_difference <- function(d) {
out <- .cohens_d_to_cles(d, converter = d_to_p_superiority, allow_paired = TRUE)
colnames(out)[1] <- "p_superiority"
out
}
#' @export
d_to_u1.effectsize_difference <- function(d) {
out <- .cohens_d_to_cles(d, converter = d_to_u1)
colnames(out)[1] <- "Cohens_U1"
if ("CI" %in% colnames(out)) {
if (d$Cohens_d < 0) {
out[3:4] <- out[4:3]
if (attr(out, "alternative") == "less") {
attr(out, "alternative") <- "greater"
} else if (attr(out, "alternative") == "greater") {
attr(out, "alternative") <- "less"
}
}
if (sign(d$CI_low) != sign(d$CI_high)) {
out$CI_low <- 0
}
}
out
}
#' @export
d_to_u2.effectsize_difference <- function(d) {
out <- .cohens_d_to_cles(d, converter = d_to_u2)
colnames(out)[1] <- "Cohens_U2"
if ("CI" %in% colnames(out)) {
if (d$Cohens_d < 0) {
out[3:4] <- out[4:3]
if (attr(out, "alternative") == "less") {
attr(out, "alternative") <- "greater"
} else if (attr(out, "alternative") == "greater") {
attr(out, "alternative") <- "less"
}
}
if (sign(d$CI_low) != sign(d$CI_high)) {
out$CI_low <- 0.5
}
}
out
}
#' @export
d_to_u3.effectsize_difference <- function(d) {
out <- .cohens_d_to_cles(d, converter = d_to_u3)
colnames(out)[1] <- "Cohens_U3"
out
}
#' @export
d_to_overlap.effectsize_difference <- function(d) {
out <- .cohens_d_to_cles(d, converter = d_to_overlap)
colnames(out)[1] <- "Overlap"
if ("CI" %in% colnames(out)) {
if (d$Cohens_d > 0) {
out[3:4] <- out[4:3]
if (attr(out, "alternative") == "less") {
attr(out, "alternative") <- "greater"
} else if (attr(out, "alternative") == "greater") {
attr(out, "alternative") <- "less"
}
}
if (sign(d$CI_low) != sign(d$CI_high)) {
out$CI_high <- 1
}
}
out
}
## Main ----------------
#' @keywords internal
.is_cles_applicable <- function(d, allow_paired = FALSE) {
paired <- attr(d, "paired")
pooled_sd <- attr(d, "pooled_sd")
# Effect size is d or g
any(colnames(d) %in% c("Cohens_d", "Hedges_g")) &&
(
# Is paired when allowed
(isTRUE(paired) && allow_paired) ||
# Is one sample when allowed
(!isTRUE(paired) && is.null(pooled_sd) && allow_paired) ||
# Is independent with pooled sd
(!isTRUE(paired) && isTRUE(pooled_sd))
)
}
#' @keywords internal
.cohens_d_to_cles <- function(d, converter, allow_paired = FALSE) {
if (!.is_cles_applicable(d, allow_paired)) {
insight::format_error("Common language effect size only applicable to 2-sample Cohen's d with pooled SD.")
}
cols_to_convert <- colnames(d) %in% c("Cohens_d", "Hedges_g", "CI_low", "CI_high")
out <- d
out[cols_to_convert] <- lapply(d[cols_to_convert], converter)
out <- as.data.frame(out)
class(out) <- c("effectsize_table", class(out))
# TODO
# class(out) <- c("effectsize_difference", "effectsize_table", "see_effectsize_table", class(out))
out
}
# From r {rbs} ------------------------------------------------------------
#' @export
rb_to_p_superiority.effectsize_difference <- function(rb) {
if (!any(colnames(rb) == "r_rank_biserial")) {
insight::format_error("Common language effect size only applicable rank-biserial correlation.")
}
cols_to_conv <- colnames(rb) %in% c("r_rank_biserial", "CI_low", "CI_high")
out <- rb
out[cols_to_conv] <- lapply(out[cols_to_conv], rb_to_p_superiority)
colnames(out)[1] <- "p_superiority"
class(out) <- c("effectsize_table", class(out))
# TODO
# class(out) <- c("effectsize_difference", "effectsize_table", "see_effectsize_table", class(out))
attr(out, "table_footer") <- "Non-parametric CLES"
out
}
|