1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#' Effect Size for Rank Based ANOVA
#'
#' Compute rank epsilon squared (\eqn{E^2_R}) or rank eta squared
#' (\eqn{\eta^2_H}) (to accompany [stats::kruskal.test()]), and Kendall's *W*
#' (to accompany [stats::friedman.test()]) effect sizes for non-parametric (rank
#' sum) one-way ANOVAs.
#'
#' @inheritParams rank_biserial
#' @param x Can be one of:
#' - A numeric or ordered vector, or a character name of one in `data`.
#' - A list of vectors (for `rank_eta/epsilon_squared()`).
#' - A matrix of `blocks x groups` (for `kendalls_w()`) (or `groups x blocks`
#' if `blocks_on_rows = FALSE`). See details for the `blocks` and `groups`
#' terminology used here.
#' - A formula in the form of:
#' - `DV ~ groups` for `rank_eta/epsilon_squared()`.
#' - `DV ~ groups | blocks` for `kendalls_w()` (See details for the
#' `blocks` and `groups` terminology used here).
#' @param groups,blocks A factor vector giving the group / block for the
#' corresponding elements of `x`, or a character name of one in `data`.
#' Ignored if `x` is not a vector.
#' @param blocks_on_rows Are blocks on rows (`TRUE`) or columns (`FALSE`).
#' @param iterations The number of bootstrap replicates for computing confidence
#' intervals. Only applies when `ci` is not `NULL`.
#'
#'
#' @details
#' The rank epsilon squared and rank eta squared are appropriate for
#' non-parametric tests of differences between 2 or more samples (a rank based
#' ANOVA). See [stats::kruskal.test]. Values range from 0 to 1, with larger
#' values indicating larger differences between groups.
#' \cr\cr
#' Kendall's *W* is appropriate for non-parametric tests of differences between
#' 2 or more dependent samples (a rank based rmANOVA), where each `group` (e.g.,
#' experimental condition) was measured for each `block` (e.g., subject). This
#' measure is also common as a measure of reliability of the rankings of the
#' `groups` between raters (`blocks`). See [stats::friedman.test]. Values range
#' from 0 to 1, with larger values indicating larger differences between groups
#' / higher agreement between raters.
#'
#' # Confidence (Compatibility) Intervals (CIs)
#' Confidence intervals for \eqn{E^2_R}, \eqn{\eta^2_H}, and Kendall's *W* are
#' estimated using the bootstrap method (using the `{boot}` package).
#'
#' @inheritSection rank_biserial Ties
#' @inheritSection effectsize_CIs CIs and Significance Tests
#' @inheritSection effectsize_CIs Bootstrapped CIs
#' @inheritSection print.effectsize_table Plotting with `see`
#'
#'
#' @return A data frame with the effect size and its CI.
#'
#' @family rank-based effect sizes
#' @family effect sizes for ANOVAs
#'
#' @examples
#' \donttest{
#' # Rank Eta/Epsilon Squared
#' # ========================
#'
#' rank_eta_squared(mpg ~ cyl, data = mtcars)
#'
#' rank_epsilon_squared(mpg ~ cyl, data = mtcars)
#'
#'
#'
#' # Kendall's W
#' # ===========
#' dat <- data.frame(
#' cond = c("A", "B", "A", "B", "A", "B"),
#' ID = c("L", "L", "M", "M", "H", "H"),
#' y = c(44.56, 28.22, 24, 28.78, 24.56, 18.78)
#' )
#' (W <- kendalls_w(y ~ cond | ID, data = dat, verbose = FALSE))
#'
#' interpret_kendalls_w(0.11)
#' interpret(W, rules = "landis1977")
#' }
#'
#' @references
#' - Kendall, M.G. (1948) Rank correlation methods. London: Griffin.
#'
#' - Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates
#' revisited. An overview of some recommended measures of effect size. Trends in
#' sport sciences, 1(21), 19-25.
#'
#' @export
rank_epsilon_squared <- function(x, groups, data = NULL,
ci = 0.95, alternative = "greater",
iterations = 200,
verbose = TRUE, ...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_htest_of_type(x, "Kruskal-Wallis", "Kruskal-Wallis-test")) {
return(effectsize(x, type = "epsilon", ci = ci, iterations = iterations, alternative = alternative))
}
## pep data
data <- .get_data_multi_group(x, groups, data,
allow_ordered = TRUE,
verbose = verbose, ...
)
## compute
out <- data.frame(rank_epsilon_squared = .repsilon(data))
## CI
if (.test_ci(ci) && insight::check_if_installed("boot", "for estimating CIs", stop = FALSE)) {
out <- cbind(out, .boot_two_group_es(
data, .repsilon, iterations,
ci, alternative
))
ci_method <- list(method = "percentile bootstrap", iterations = iterations)
} else {
ci_method <- alternative <- ci <- NULL
}
class(out) <- c("effectsize_table", "see_effectsize_table", class(out))
attr(out, "ci") <- ci
attr(out, "ci_method") <- ci_method
attr(out, "approximate") <- FALSE
attr(out, "alternative") <- alternative
return(out)
}
#' @export
#' @rdname rank_epsilon_squared
rank_eta_squared <- function(x, groups, data = NULL,
ci = 0.95, alternative = "greater",
iterations = 200,
verbose = TRUE, ...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_htest_of_type(x, "Kruskal-Wallis", "Kruskal-Wallis-test")) {
return(effectsize(x, type = "eta", ci = ci, iterations = iterations, alternative = alternative))
}
## pep data
data <- .get_data_multi_group(x, groups, data,
allow_ordered = TRUE,
verbose = verbose, ...
)
out <- data.frame(rank_eta_squared = .reta(data))
## CI
if (.test_ci(ci) && insight::check_if_installed("boot", "for estimating CIs", stop = FALSE)) {
out <- cbind(out, .boot_two_group_es(
data, .reta, iterations,
ci, alternative
))
ci_method <- list(method = "percentile bootstrap", iterations = iterations)
} else {
ci_method <- alternative <- ci <- NULL
}
class(out) <- c("effectsize_table", "see_effectsize_table", class(out))
attr(out, "ci") <- ci
attr(out, "ci_method") <- ci_method
attr(out, "approximate") <- FALSE
attr(out, "alternative") <- alternative
return(out)
}
#' @rdname rank_epsilon_squared
#' @export
kendalls_w <- function(x, groups, blocks, data = NULL,
blocks_on_rows = TRUE,
ci = 0.95, alternative = "greater",
iterations = 200,
verbose = TRUE, ...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_htest_of_type(x, "Friedman", "Friedman-test")) {
return(effectsize(x, ci = ci, iterations = iterations, verbose = verbose, alternative = alternative))
}
## prep data
if (is.matrix(x) && !blocks_on_rows) x <- t(x)
data <- .get_data_nested_groups(x, groups, blocks, data,
allow_ordered = TRUE,
verbose = verbose, ...
)
data <- stats::na.omit(data) # wide data - drop non complete cases
## compute
W <- .kendalls_w(data, verbose = verbose)
out <- data.frame(Kendalls_W = W)
## CI
if (.test_ci(ci) && insight::check_if_installed("boot", "for estimating CIs", stop = FALSE)) {
out <- cbind(out, .kendalls_w_ci(data, ci, alternative, iterations))
ci_method <- list(method = "percentile bootstrap", iterations = iterations)
} else {
ci_method <- alternative <- ci <- NULL
}
class(out) <- c("effectsize_table", "see_effectsize_table", class(out))
attr(out, "ci") <- ci
attr(out, "ci_method") <- ci_method
attr(out, "approximate") <- FALSE
attr(out, "alternative") <- alternative
return(out)
}
# Utils -------------------------------------------------------------------
## Get ----
#' @keywords internal
.repsilon <- function(data) {
model <- suppressWarnings(stats::kruskal.test(data$x, data$groups))
H <- unname(model$statistic)
n <- nrow(data)
E <- H / ((n^2 - 1) / (n + 1))
}
#' @keywords internal
.reta <- function(data) {
model <- suppressWarnings(stats::kruskal.test(data$x, data$groups))
k <- nlevels(data$groups)
n <- nrow(data)
E <- model$statistic
pmax(0, (E - k + 1) / (n - k))
}
#' @keywords internal
.kendalls_w <- function(data, verbose) {
rankings <- apply(data, 1, .safe_ranktransform, verbose = verbose)
rankings <- t(rankings) # keep dims
n <- ncol(rankings) # items
m <- nrow(rankings) # judges
R <- colSums(rankings)
no_ties <- apply(rankings, 1, function(x) length(x) == insight::n_unique(x))
if (all(no_ties)) {
S <- stats::var(R) * (n - 1)
W <- (12 * S) / (m^2 * (n^3 - n))
} else {
if (verbose) {
insight::format_warning(
sprintf(
"%d block(s) contain ties%s.",
sum(!no_ties),
ifelse(any(apply(as.data.frame(rankings)[!no_ties, ], 1, insight::n_unique) == 1),
", some containing only 1 unique ranking", ""
)
)
)
}
Tj <- sum(apply(rankings, 1, function(.r) {
TTi <- table(.r)
sum(TTi^3 - TTi)
}))
W <- (12 * sum(R^2) - 3 * (m^2) * n * ((n + 1)^2)) /
(m^2 * (n^3 - n) - m * Tj)
}
W
}
## CI ----
#' @keywords internal
.boot_two_group_es <- function(data, foo_es, iterations,
ci, alternative, lim) {
ci.level <- .adjust_ci(ci, alternative)
boot_fun <- function(.data, .i) {
split(.data$x, .data$groups) <-
lapply(
split(.data$x, .data$groups),
function(v) {
if (length(v) < 2L) {
return(v)
}
sample(v, size = length(v), replace = TRUE)
}
)
foo_es(.data)
}
R <- boot::boot(
data = data,
statistic = boot_fun,
R = iterations
)
bCI <- boot::boot.ci(R, conf = ci.level, type = "perc")$percent
bCI <- utils::tail(as.vector(bCI), 2)
out <- data.frame(
CI = ci,
CI_low = bCI[1],
CI_high = bCI[2]
)
.limit_ci(out, alternative, 0, 1)
}
#' @keywords internal
.kendalls_w_ci <- function(data, ci, alternative, iterations) {
ci.level <- .adjust_ci(ci, alternative)
boot_w <- function(.data, .i) {
.kendalls_w(.data[.i, ], verbose = FALSE) # sample rows
}
R <- boot::boot(
data = data,
statistic = boot_w,
R = iterations
)
bCI <- boot::boot.ci(R, conf = ci.level, type = "perc")$percent
bCI <- utils::tail(as.vector(bCI), 2)
out <- data.frame(
CI = ci,
CI_low = bCI[1],
CI_high = bCI[2]
)
.limit_ci(out, alternative, 0, 1)
}
|