1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
# styler: off
#' \eqn{\phi} and Other Contingency Tables Correlations
#'
#' Compute phi (\eqn{\phi}), Cramer's *V*, Tschuprow's *T*, Cohen's *w*,
#' \ifelse{latex}{\eqn{Fei}}{פ (Fei)}, Pearson's contingency coefficient for
#' contingency tables or goodness-of-fit. Pair with any reported
#' [`stats::chisq.test()`].
#'
#' @inheritParams stats::chisq.test
#' @inheritParams chisq_to_phi
#' @param ... Ignored.
#'
#' @details
#'
#' phi (\eqn{\phi}), Cramer's *V*, Tschuprow's *T*, Cohen's *w*, and Pearson's
#' *C* are effect sizes for tests of independence in 2D contingency tables. For
#' 2-by-2 tables, phi, Cramer's *V*, Tschuprow's *T*, and Cohen's *w* are
#' identical, and are equal to the simple correlation between two dichotomous
#' variables, ranging between 0 (no dependence) and 1 (perfect dependence).
#' \cr\cr
#' For larger tables, Cramer's *V*, Tschuprow's *T* or Pearson's *C* should be
#' used, as they are bounded between 0-1. (Cohen's *w* can also be used, but
#' since it is not bounded at 1 (can be larger) its interpretation is more
#' difficult.) For square table, Cramer's *V* and Tschuprow's *T* give the same
#' results, but for non-square tables Tschuprow's *T* is more conservative:
#' while *V* will be 1 if either columns are fully dependent on rows (for each
#' column, there is only one non-0 cell) *or* rows are fully dependent on
#' columns, *T* will only be 1 if both are true.
#' \cr \cr
#' For goodness-of-fit in 1D tables Cohen's *W*, \ifelse{latex}{\eqn{Fei}}{פ (Fei)}
#' or Pearson's *C* can be used. Cohen's *w* has no upper bound (can be
#' arbitrarily large, depending on the expected distribution). *Fei* is an
#' adjusted Cohen's *w*, accounting for the expected distribution, making it
#' bounded between 0-1 (Ben-Shachar et al, 2023). Pearson's *C* is also bounded
#' between 0-1.
#' \cr \cr
#' To summarize, for correlation-like effect sizes, we recommend:
#'
#' - For a 2x2 table, use `phi()`
#' - For larger tables, use `cramers_v()`
#' - For goodness-of-fit, use `fei()`
#'
#' @inheritSection effectsize_CIs Confidence (Compatibility) Intervals (CIs)
#' @inheritSection effectsize_CIs CIs and Significance Tests
#' @inheritSection print.effectsize_table Plotting with `see`
#'
#' @return A data frame with the effect size (`Cramers_v`, `phi` (possibly with
#' the suffix `_adjusted`), `Cohens_w`, `Fei`) and its CIs (`CI_low` and
#' `CI_high`).
#'
#' @seealso [chisq_to_phi()] for details regarding estimation and CIs.
#' @family effect sizes for contingency table
#'
#' @examples
#'
#' ## 2-by-2 tables
#' ## -------------
#' data("RCT_table")
#' RCT_table # note groups are COLUMNS
#'
#' phi(RCT_table)
#' pearsons_c(RCT_table)
#'
#'
#'
#' ## Larger tables
#' ## -------------
#' data("Music_preferences")
#' Music_preferences
#'
#' cramers_v(Music_preferences)
#'
#' cohens_w(Music_preferences)
#'
#' pearsons_c(Music_preferences)
#'
#'
#'
#' ## Goodness of fit
#' ## ---------------
#' data("Smoking_FASD")
#' Smoking_FASD
#'
#' fei(Smoking_FASD)
#'
#' cohens_w(Smoking_FASD)
#'
#' pearsons_c(Smoking_FASD)
#'
#' # Use custom expected values:
#' fei(Smoking_FASD, p = c(0.015, 0.010, 0.975))
#'
#' cohens_w(Smoking_FASD, p = c(0.015, 0.010, 0.975))
#'
#' pearsons_c(Smoking_FASD, p = c(0.015, 0.010, 0.975))
#'
#' @references
#' - Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
#' - Ben-Shachar, M.S., Patil, I., Thériault, R., Wiernik, B.M., Lüdecke, D.
#' (2023). Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the
#' Chi‑Squared Statistic. Mathematics, 11, 1982. \doi{10.3390/math11091982}
#' - Johnston, J. E., Berry, K. J., & Mielke Jr, P. W. (2006). Measures of
#' effect size for chi-squared and likelihood-ratio goodness-of-fit tests.
#' Perceptual and motor skills, 103(2), 412-414.
#' - Rosenberg, M. S. (2010). A generalized formula for converting chi-square
#' tests to effect sizes for meta-analysis. PloS one, 5(4), e10059.
#'
#'
#' @export
phi <- function(x, y = NULL,
adjust = TRUE,
ci = 0.95, alternative = "greater",
...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "phi", adjust = adjust, ci = ci))
} else if (!.is_htest_of_type(x, "Pearson's Chi-squared", "Chi-squared-test")) {
x <- suppressWarnings(stats::chisq.test(x, y))
x$data.name <- NULL
}
effectsize(x, type = "phi", adjust = adjust, ci = ci, alternative = alternative)
}
#' @rdname phi
#' @export
cramers_v <- function(x, y = NULL,
adjust = TRUE,
ci = 0.95, alternative = "greater",
...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "cramers_v", adjust = adjust, ci = ci))
} else if (!.is_htest_of_type(x, "Pearson's Chi-squared", "Chi-squared-test")) {
x <- suppressWarnings(stats::chisq.test(x, y))
x$data.name <- NULL
}
effectsize(x, type = "cramers_v", adjust = adjust, ci = ci, alternative = alternative)
}
#' @rdname phi
#' @export
tschuprows_t <- function(x, y = NULL,
adjust = TRUE,
ci = 0.95, alternative = "greater",
...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "tschuprows_t", ci = ci))
} else if (!.is_htest_of_type(x, "Pearson's Chi-squared", "Chi-squared-test")) {
x <- suppressWarnings(stats::chisq.test(x, y))
x$data.name <- NULL
}
effectsize(x, type = "tschuprows_t", adjust = adjust, ci = ci, alternative = alternative)
}
#' @rdname phi
#' @export
cohens_w <- function(x, y = NULL, p = rep(1, length(x)),
ci = 0.95, alternative = "greater",
...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "cohens_w", ci = ci))
} else if (!.is_htest_of_type(
x, "(Pearson's Chi-squared|Chi-squared test for given probabilities)",
"Chi-squared-test"
)) {
x <- suppressWarnings(stats::chisq.test(x, y, p = p, rescale.p = TRUE))
x$data.name <- NULL
}
effectsize(x, type = "cohens_w", ci = ci, alternative = alternative)
}
#' @rdname phi
#' @export
fei <- function(x, p = rep(1, length(x)),
ci = 0.95, alternative = "greater",
...) {
alternative <- .match.alt(alternative, FALSE)
if (inherits(x, "BFBayesFactor")) {
insight::format_error("Fei is only applicable to goodness of fit tests.")
} else if (!.is_htest_of_type(x, "Chi-squared test for given probabilities", "Chi-squared-test")) {
x <- suppressWarnings(stats::chisq.test(x, y = NULL, p = p, rescale.p = TRUE))
x$data.name <- NULL
table_dim <- dim(x$observed)
is_1d_table <- is.null(table_dim) || # vector
length(table_dim) == 1 || # 1D table
(length(table_dim) == 2 && any(table_dim == 1))
if (!is_1d_table) {
insight::format_error("Fei is only applicable to goodness of fit tests.")
}
}
effectsize(x, type = "fei", ci = ci, alternative = alternative)
}
#' @rdname phi
#' @export
pearsons_c <- function(x, y = NULL, p = rep(1, length(x)),
ci = 0.95, alternative = "greater",
...) {
alternative <- .match.alt(alternative, FALSE)
if (.is_BF_of_type(x, "BFcontingencyTable", "Chi-squared")) {
return(effectsize(x, type = "pearsons_c", ci = ci))
} else if (!.is_htest_of_type(
x, "(Pearson's Chi-squared|Chi-squared test for given probabilities)",
"Chi-squared-test"
)) {
x <- suppressWarnings(stats::chisq.test(x, y, p = p, rescale.p = TRUE))
x$data.name <- NULL
}
effectsize(x, type = "pearsons_c", ci = ci, alternative = alternative)
}
# styler: on
|