1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
BayesMDei <- function(formula, data, total, lambda1 = 4, lambda2 = 2,
tune.alpha = NULL, tune.beta = NULL,
start.alphas = NULL, start.betas = NULL,
sample = 1000, thin = 1, burnin = 1000, verbose = 0,
ret.beta ='r', ret.mcmc = TRUE, ...){
if(thin < 1){stop('thin must be positive integer')}
if(sample < 1){stop('thin must be positive integer')}
if(burnin < 0){stop('burnin must be non-negative integer')}
DD <- model.frame(formula, data)
countParty <- countGroup <- propParty <- propGroup <- FALSE
checkGroups <- round(apply(DD[[2]], 1, sum), 3)
checkParties <- round(apply(DD[[1]], 1, sum), 3)
if(all(DD[[1]] %% 1 == 0) & all(DD[[1]] >= 0)){countParty <- TRUE}
else if(all(0 <= DD[[1]] & DD[[1]] <= 1)){
if(all(checkParties == 1)){propParty <- TRUE}else{
stop("column marginals are proportions that do not
sum to 1 - please respecify data")}}
else stop("column marginals are neither counts nor proportions - please
respecify data")
if(all(DD[[2]] %% 1 == 0) & all(DD[[2]] >= 0)){countGroup <- TRUE}
else if(all(0 <= DD[[2]] & DD[[2]] <= 1)){
if(all(checkGroups == 1)){propGroup <- TRUE}else{
stop("row marginals are proportions that do not sum to 1 - please
respecify data")}}
else stop("row marginals are neither counts nor proportions - please
respecify data")
if((propParty | propGroup) & is.null(total)){
stop("one or both marginals are proportions - 'total' must be
provided")}
if(propParty & !is.null(total)){
DD[[1]] <- DD[[1]] * total
warning("column marginals are proportions - multiplying by unit size")}
if(propGroup & !is.null(total)){
DD[[2]] <- DD[[2]] * total
warning("row margnials are proportions - multiplying by unit size")}
checkGroups <- round(apply(DD[[2]], 1, sum), 1)
checkParties <- round(apply(DD[[1]], 1, sum), 1)
if(identical(checkParties, checkGroups) == FALSE){
stop("row and column totals unequal in some units - please
respecify data")}
Groups <- DD[[2]]
TT <- t(DD[[1]])
XX <- t(Groups/apply(Groups,1,sum))
group.names <- colnames(Groups)
party.names <- rownames(TT)
RR <- t(Groups)
NG <- nrow(XX)
NP <- nrow(TT)
Precincts <- nrow(DD)
if(is.null(start.alphas)){
start.alphas <- matrix(rgamma(NG*NP, lambda1, lambda2), NG, NP)}
if(min(start.alphas) <= 0){stop('inadmissable starting values for alpha')}
if(is.null(start.betas)){
start.betas <- array(NA, dim= c(NG, NP, Precincts))
for(i in 1:Precincts){
start.betas[,,i] <- rdirichlet(NG, rep(1,NP))}
}
if(identical(round(apply(start.betas, c(1,3), sum),10),
matrix(1,NG, Precincts))!=TRUE){
stop('inadmissable starting values for beta')}
if(is.null(tune.alpha)){
tune.alpha <- matrix(rep(.25,NG*NP), NG, NP)}
if(is.null(tune.beta)){
tune.beta <- array(rep(.05, NG*(NP-1)*Precincts), c(NG, NP-1, Precincts))}
tune.alpha <- as.matrix(tune.alpha)
if(identical(dim(tune.alpha), c(NG, NP))!=TRUE) {stop("'tune.alpha'
has incorrect dimensions")}
if(identical(as.numeric(dim(tune.beta)), c(NG, NP-1, Precincts))!=TRUE)
{stop("'tune.beta'
has incorrect dimensions")}
beta.names <- paste(paste(paste(group.names,matrix(rep(party.names,
NG),NG,NP, byrow=T)
,sep="."),
matrix(rep(1:Precincts,NG*NP),NG*NP, Precincts,
byrow=TRUE),sep="."), ".txt.gz", sep="")
if(ret.beta == 's'){touch.betas(beta.names)
ret.beta <- 2}
if(ret.beta == 'd'){ret.beta <- 1}
if(ret.beta == 'r'){ret.beta <- 0}
if(is.numeric(ret.beta)==FALSE){stop('incorrect option for
ret.beta')}
output <- .Call("rbycei_fcn1",
as.numeric(start.alphas),
as.numeric(start.betas),
as.numeric(TT),
as.numeric(XX),
as.numeric(tune.alpha),
as.numeric(tune.beta),
as.integer(NG),
as.integer(NP),
as.integer(Precincts),
as.numeric(lambda1),
as.numeric(lambda2),
as.integer(sample),
as.integer(thin),
as.integer(burnin),
as.integer(verbose),
as.integer(ret.beta),
as.numeric(RR),
as.character(beta.names)
)
if(ret.beta==0){names(output) <- c("Alpha", "Beta", "alpha.acc",
"beta.acc", "cell.count")}
else{names(output) <- c("Alpha", "alpha.acc", "beta.acc","cell.count")}
if(ret.mcmc){
colnames(output$Alpha) <- paste("alpha",matrix(rep(group.names,
NP),NG,NP)
,matrix(rep(party.names, NG),NG,NP,
byrow=T) ,sep=".")
output$Alpha <- coda::mcmc(output$Alpha, thin=thin)
colnames(output$cell.count) <- paste("ccount",matrix(rep(group.names,
NP),NG,NP)
,matrix(rep(party.names, NG),NG,NP,
byrow=T) ,sep=".")
output$cell.count <- coda::mcmc(output$cell.count, thin=thin)
if(ret.beta==0){
colnames(output$Beta) <- paste(paste("beta", group.names,matrix(rep(party.names, NG),NG,NP, byrow=T) ,sep="."), matrix(rep(1:Precincts,NG*NP),NG*NP, Precincts, byrow=TRUE),sep=".")
output$Beta <- coda::mcmc(output$Beta, thin=thin)
}
}else{
output$Alpha <- array(t(output$Alpha), c(NG, NP, sample))
dimnames(output$Alpha) <- list(group.names, party.names, 1:sample)
output$cell.count <- array(t(output$cell.count), c(NG, NP, sample))
dimnames(output$cell.count) <- list(group.names, party.names, 1:sample)
if(ret.beta==0){
output$Beta <- array(t(output$Beta), c(NG, NP, Precincts, sample))
dimnames(output$Beta) <- list(group.names, party.names, 1:Precincts,
1:sample)
}
}
return(output)
}
|