1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
\name{lambda.reg}
\alias{lambda.reg}
\title{Calculate shares using data from regression model}
\description{Calculates the population share of row members in a particular column}
\usage{
lambda.reg(object, columns)
}
\arguments{
\item{object}{An R object of class \code{eiReg}, the output from \code{\link{ei.reg}}}
\item{columns}{a character vector of column names to be included in calculating
the shares}
}
\value{
Returns a list with the following elements
\item{call}{the call to \code{lambda.reg}}
\item{lambda}{an \eqn{R \times k}{R x k} matrix
where \eqn{k}{k} is the
number of columns included in the share calculation}
\item{se}{standard errors calculated using the delta method as implemented
in the library \code{msm}}
}
\details{
Standard errors are calculated using the delta method as implemented in
the library \code{msm}. The arguments passed to
\code{deltamethod} in \code{msm} include
\itemize{
\item{\code{g}}{a list of transformations of the form \code{~ x1 / (x1 + x2 +
+ ... + xk)}, \code{~ x2 / (x1 + x2 + ... + xk)}, etc.}. Each
\eqn{x_c}{xc} is the estimated proportion of all row members in column
\eqn{c}{c}, \eqn{\hat{\beta}_{rc}}{beta_rc}
\item{\code{mean}}{the estimated proportions of the row members in the
specified columns, as a proportion of the total number of row
members, \eqn{(\hat{\beta}_{r1}, \hat{\beta}_{r2}, ...,
\hat{\beta}_{rk})}{(beta_r1, beta_r2, ..., beta_rk)}.}
\item{\code{cov}}{a diagonal matrix with the estimated variance of each
\eqn{\hat{\beta}_{rc}}{beta_rc} on the diagonal. Each column
marginal is assumed to be independent, such that the off-diagonal
elements of this matrix are zero. Estimates come from
\code{object$cov.matrices}, the estimated covariance matrix from
the regression of the relevant column. Thus,
}
}
\tabular{cccccc}{
cov \tab = \tab \eqn{Var(\hat{\beta}_{r1})}{Var(beta_r1)} \tab 0
\tab 0 \tab \eqn{\ldots}{...} \cr
\tab \tab 0 \tab \eqn{Var(\hat{\beta}_{r2})}{Var(beta_r2)} \tab 0 \tab \eqn{\ldots}{...} \cr
\tab \tab 0 \tab 0 \tab \eqn{Var(\hat{\beta}_{r3})}{Var(beta_{r3})} \tab \eqn{\ldots}{...} \cr
\tab \tab \eqn{\vdots}{...} \tab \eqn{\vdots}{...} \tab \eqn{\vdots}{...} \tab \eqn{\ddots}{...}\cr
}
}
\seealso{\code{\link{ei.reg}}}
\author{
Ryan T. Moore <\email{rtm@american.edu}>
}
\keyword{models}
|