File: discr_si.Rd

package info (click to toggle)
r-cran-epiestim 2.2-4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 636 kB
  • sloc: sh: 15; makefile: 2
file content (65 lines) | stat: -rw-r--r-- 2,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/discr_si.R
\name{discr_si}
\alias{discr_si}
\title{Discretized Generation Time Distribution Assuming A Shifted Gamma 
Distribution}
\usage{
discr_si(k, mu, sigma)
}
\arguments{
\item{k}{Positive integer, or vector of positive integers for which the 
discrete distribution is desired.}

\item{mu}{A positive real giving the mean of the Gamma distribution.}

\item{sigma}{A non-negative real giving the standard deviation of the Gamma 
distribution.}
}
\value{
Gives the discrete probability \eqn{w_k} that the serial interval is 
equal to \eqn{k}.
}
\description{
\code{discr_si} computes the discrete distribution of the serial interval, 
assuming that the serial interval is shifted Gamma distributed, with shift 1.
}
\details{
{
Assuming that the serial interval is shifted Gamma distributed with mean 
\eqn{\mu}, standard deviation \eqn{\sigma} and shift \eqn{1},
the discrete probability \eqn{w_k} that the serial interval is equal to 
\eqn{k} is:

\deqn{w_k = kF_{\{\mu-1,\sigma\}}(k)+(k-2)F_{\{\mu-1,\sigma\}}
(k-2)-2(k-1)F_{\{\mu-1,\sigma\}}(k-1)\\
+(\mu-1)(2F_{\{\mu-1+\frac{\sigma^2}{\mu-1},
\sigma\sqrt{1+\frac{\sigma^2}{\mu-1}}\}}(k-1)-
F_{\{\mu-1+\frac{\sigma^2}{\mu-1},
\sigma\sqrt{1+\frac{\sigma^2}{\mu-1}}\}}(k-2)-
F_{\{\mu-1+\frac{\sigma^2}{\mu-1},
\sigma\sqrt{1+\frac{\sigma^2}{\mu-1}}\}}(k))}

where \eqn{F_{\{\mu,\sigma\}}} is the cumulative density function of a Gamma 
distribution with mean \eqn{\mu} and standard deviation \eqn{\sigma}.
}
}
\examples{
## Computing the discrete serial interval of influenza
mean_flu_si <- 2.6
sd_flu_si <- 1.5
dicrete_si_distr <- discr_si(seq(0, 20), mean_flu_si, sd_flu_si)
plot(seq(0, 20), dicrete_si_distr, type = "h",
          lwd = 10, lend = 1, xlab = "time (days)", ylab = "frequency")
title(main = "Discrete distribution of the serial interval of influenza")
}
\references{
Cori, A. et al. A new framework and software to estimate 
time-varying reproduction numbers during epidemics (AJE 2013).
}
\seealso{
\code{\link{overall_infectivity}}, \code{\link{estimate_R}}
}
\author{
Anne Cori \email{a.cori@imperial.ac.uk}
}