1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/discr_si.R
\name{discr_si}
\alias{discr_si}
\title{Discretized Generation Time Distribution Assuming A Shifted Gamma
Distribution}
\usage{
discr_si(k, mu, sigma)
}
\arguments{
\item{k}{Positive integer, or vector of positive integers for which the
discrete distribution is desired.}
\item{mu}{A positive real giving the mean of the Gamma distribution.}
\item{sigma}{A non-negative real giving the standard deviation of the Gamma
distribution.}
}
\value{
Gives the discrete probability \eqn{w_k} that the serial interval is
equal to \eqn{k}.
}
\description{
\code{discr_si} computes the discrete distribution of the serial interval,
assuming that the serial interval is shifted Gamma distributed, with shift 1.
}
\details{
{
Assuming that the serial interval is shifted Gamma distributed with mean
\eqn{\mu}, standard deviation \eqn{\sigma} and shift \eqn{1},
the discrete probability \eqn{w_k} that the serial interval is equal to
\eqn{k} is:
\deqn{w_k = kF_{\{\mu-1,\sigma\}}(k)+(k-2)F_{\{\mu-1,\sigma\}}
(k-2)-2(k-1)F_{\{\mu-1,\sigma\}}(k-1)\\
+(\mu-1)(2F_{\{\mu-1+\frac{\sigma^2}{\mu-1},
\sigma\sqrt{1+\frac{\sigma^2}{\mu-1}}\}}(k-1)-
F_{\{\mu-1+\frac{\sigma^2}{\mu-1},
\sigma\sqrt{1+\frac{\sigma^2}{\mu-1}}\}}(k-2)-
F_{\{\mu-1+\frac{\sigma^2}{\mu-1},
\sigma\sqrt{1+\frac{\sigma^2}{\mu-1}}\}}(k))}
where \eqn{F_{\{\mu,\sigma\}}} is the cumulative density function of a Gamma
distribution with mean \eqn{\mu} and standard deviation \eqn{\sigma}.
}
}
\examples{
## Computing the discrete serial interval of influenza
mean_flu_si <- 2.6
sd_flu_si <- 1.5
dicrete_si_distr <- discr_si(seq(0, 20), mean_flu_si, sd_flu_si)
plot(seq(0, 20), dicrete_si_distr, type = "h",
lwd = 10, lend = 1, xlab = "time (days)", ylab = "frequency")
title(main = "Discrete distribution of the serial interval of influenza")
}
\references{
Cori, A. et al. A new framework and software to estimate
time-varying reproduction numbers during epidemics (AJE 2013).
}
\seealso{
\code{\link{overall_infectivity}}, \code{\link{estimate_R}}
}
\author{
Anne Cori \email{a.cori@imperial.ac.uk}
}
|