File: plot.estimate_R.Rd

package info (click to toggle)
r-cran-epiestim 2.2-4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 636 kB
  • sloc: sh: 15; makefile: 2
file content (135 lines) | stat: -rw-r--r-- 5,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plot.R
\name{plot.estimate_R}
\alias{plot.estimate_R}
\title{Plot outputs of estimate_r}
\usage{
\method{plot}{estimate_R}(
  x,
  what = c("all", "incid", "R", "SI"),
  add_imported_cases = FALSE,
  options_I = list(col = palette(), transp = 0.7, xlim = NULL, ylim = NULL, interval =
    1L, xlab = "Time", ylab = "Incidence"),
  options_R = list(col = palette(), transp = 0.2, xlim = NULL, ylim = NULL, xlab =
    "Time", ylab = "R"),
  options_SI = list(prob_min = 0.001, col = "black", transp = 0.25, xlim = NULL, ylim =
    NULL, xlab = "Time", ylab = "Frequency"),
  legend = TRUE,
  ...
)
}
\arguments{
\item{x}{The output of function \code{\link{estimate_R}} or function
\code{\link{wallinga_teunis}}. To plot simultaneous outputs on the same 
plot use \code{\link{estimate_R_plots}} function}

\item{what}{A string specifying what to plot, namely the incidence time
series (\code{what='incid'}), the estimated reproduction number
(\code{what='R'}), the serial interval distribution (\code{what='SI'}, or
all three (\code{what='all'})).}

\item{add_imported_cases}{A boolean to specify whether, on the incidence time
series plot, to add the incidence of imported cases.}

\item{options_I}{For what = "incid" or "all". A list of graphical options:
\describe{ \item{col}{A color or vector of colors used for plotting
incid. By default uses the default R colors.}  \item{transp}{A numeric
value between 0 and 1 used to monitor transparency of the bars
plotted. Defaults to 0.7.}  \item{xlim}{A parameter similar to that in
\code{par}, to monitor the limits of the horizontal axis} \item{ylim}{A
parameter similar to that in \code{par}, to monitor the limits of the
vertical axis} \item{interval}{An integer or character indicating the 
(fixed) size of the time interval used for plotting the incidence; 
defaults to 1 day.} \item{xlab, ylab}{Labels for the axes of the 
incidence plot}}}

\item{options_R}{For what = "R" or "all". A list of graphical options:
\describe{ \item{col}{A color or vector of colors used for plotting R. By
default uses the default R colors.}  \item{transp}{A numeric value between
0 and 1 used to monitor transparency of the 95\%CrI. Defaults to 0.2.}
\item{xlim}{A parameter similar to that in \code{par}, to monitor the
limits of the horizontal axis} \item{ylim}{A parameter similar to that in
\code{par}, to monitor the limits of the vertical axis} 
\item{xlab, ylab}{Labels for the axes of the R plot}}}

\item{options_SI}{For what = "SI" or "all". A list of graphical options:
\describe{ \item{prob_min}{A numeric value between 0 and 1. The SI
distributions explored are only shown from time 0 up to the time t so that
each distribution explored has probability < \code{prob_min} to be on any
time step after t. Defaults to 0.001.}  \item{col}{A color or vector of
colors used for plotting the SI. Defaults to black.}  \item{transp}{A
numeric value between 0 and 1 used to monitor transparency of the
lines. Defaults to 0.25} \item{xlim}{A parameter similar to that in
\code{par}, to monitor the limits of the horizontal axis} \item{ylim}{A
parameter similar to that in \code{par}, to monitor the limits of the
vertical axis} \item{xlab, ylab}{Labels for the axes of the serial interval
 distribution plot}}}

\item{legend}{A boolean (TRUE by default) governing the presence / absence of
legends on the plots}

\item{...}{further arguments passed to other methods (currently unused).}
}
\value{
a plot (if \code{what = "incid"}, \code{"R"}, or \code{"SI"}) or a
  \code{\link[grid]{grob}} object (if \code{what = "all"}).
}
\description{
The plot method of \code{estimate_r} objects can be used to visualise three
types of information. The first one shows the epidemic curve. The second one
shows the posterior mean and 95\% credible interval of the reproduction
number. The estimate for a time window is plotted at the end of the time
window. The third plot shows the discrete distribution(s) of the serial
interval.
}
\examples{
## load data on pandemic flu in a school in 2009
data("Flu2009")

## estimate the instantaneous reproduction number
## (method "non_parametric_si")
R_i <- estimate_R(Flu2009$incidence,
                  method = "non_parametric_si",
                  config = list(t_start = seq(2, 26), 
                                t_end = seq(8, 32), 
                                si_distr = Flu2009$si_distr
                               )
                 )

## visualise results
plot(R_i, legend = FALSE)

## estimate the instantaneous reproduction number
## (method "non_parametric_si")
R_c <- wallinga_teunis(Flu2009$incidence, 
                       method = "non_parametric_si",
                       config = list(t_start = seq(2, 26), 
                                     t_end = seq(8, 32), 
                                     si_distr = Flu2009$si_distr
                                    )
                      )

## produce plot of the incidence
## (with, on top of total incidence, the incidence of imported cases),
## estimated instantaneous and case reproduction numbers
## and serial interval distribution used
p_I <- plot(R_i, "incid", add_imported_cases=TRUE) # plots the incidence
p_SI <- plot(R_i, "SI") # plots the serial interval distribution
p_Ri <- plot(R_i, "R",
             options_R = list(ylim = c(0, 4)))
        # plots the estimated instantaneous reproduction number
p_Rc <- plot(R_c, "R",
             options_R = list(ylim = c(0, 4)))
        # plots the estimated case reproduction number
gridExtra::grid.arrange(p_I, p_SI, p_Ri, p_Rc, ncol = 2)

}
\seealso{
\code{\link{estimate_R}}, 
  \code{\link{wallinga_teunis}} and 
  \code{\link{estimate_R_plots}}
}
\author{
Rolina van Gaalen \email{rolina.van.gaalen@rivm.nl} and Anne Cori
  \email{a.cori@imperial.ac.uk}; S3 method by Thibaut Jombart
}