File: epi.dsl.R

package info (click to toggle)
r-cran-epir 2.0.80%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,332 kB
  • sloc: makefile: 5
file content (212 lines) | stat: -rw-r--r-- 8,998 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"epi.dsl" <- function(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio", alternative = c("two.sided", "less", "greater"), conf.level = 0.95)
    {
        # Declarations:
        k <- length(names)
        a.i <- ev.trt
        b.i <- n.trt - ev.trt
        c.i <- ev.ctrl
        d.i <- n.ctrl - ev.ctrl
        
        N <- 1 - ((1 - conf.level) / 2)
        z <- qnorm(N, mean = 0, sd = 1)

        # Test each strata for zero values. Add 0.5 to all cells if any cell has a zero value:
        for(i in 1:k){
        if(a.i[i] < 1 | b.i[i] < 1 | c.i[i] < 1 | d.i[i] < 1){
           a.i[i] <- a.i[i] + 0.5; b.i[i] <- b.i[i] + 0.5; c.i[i] <- c.i[i] + 0.5; d.i[i] <- d.i[i] + 0.5
           }
        }

        n.1i <- a.i + b.i
        n.2i <- c.i + d.i
        N.i <- a.i + b.i + c.i + d.i

        # For summary odds ratio:
        R <-  sum((a.i * d.i) / N.i)
        S <-  sum((b.i * c.i) / N.i)
        E <-  sum(((a.i + d.i) * a.i * d.i) / N.i^2)
        F. <- sum(((a.i + d.i) * b.i * c.i) / N.i^2)
        G <-  sum(((b.i + c.i) * a.i * d.i) / N.i^2) 
        H <-  sum(((b.i + c.i) * b.i * c.i) / N.i^2)
        P <- sum(((n.1i * n.2i * (a.i + c.i)) - (a.i * c.i * N.i)) / N.i^2)
        # For summary risk ratio:
        R. <- sum((a.i * n.2i) / N.i)
        S. <- sum((c.i * n.1i) / N.i)

        # Individual study odds ratios:
        if(method == "odds.ratio")
          {OR.i <- (a.i * d.i) / (b.i * c.i)   
           lnOR.i <- log(OR.i)
           SE.lnOR.i <- sqrt(1/a.i + 1/b.i + 1/c.i + 1/d.i)
           SE.OR.i <- exp(SE.lnOR.i)
           lower.lnOR.i <- lnOR.i - (z * SE.lnOR.i)
           upper.lnOR.i <- lnOR.i + (z * SE.lnOR.i)
           lower.OR.i <- exp(lower.lnOR.i)
           upper.OR.i <- exp(upper.lnOR.i)
        
           # Weights:      
           w.i <- (b.i * c.i) / N.i
           w.iv.i <- 1 / (SE.lnOR.i)^2         

           # MH pooled odds ratios (relative effect measures combined in their natural scale):
           OR.mh <- sum(w.iv.i * OR.i)/sum(w.iv.i)
           lnOR.mh <- log(OR.mh)
           SE.lnOR.mh <- sqrt(1/2 * ((E/R^2) + ((F. + G)/(R * S)) + (H/S^2)))

           # DSL pooled odds ratios:
           Q <- sum(w.iv.i * (lnOR.i - lnOR.mh)^2)
           df <- k - 1
           p.heterogeneity <- 1 - pchisq(Q, df)
           tau.sq.upper <- Q - df
           tau.sq.lower <- sum(w.iv.i) - (sum((w.iv.i)^2) / sum(w.iv.i))

           # If Q is less than (k - 1) tau.sq equals zero:
           tau.sq <- ifelse(Q < (k - 1), 0, (tau.sq.upper / tau.sq.lower))
           w.dsl.i <- 1 / (((SE.lnOR.i)^2) + tau.sq)
           lnOR.dsl <- sum(w.dsl.i * lnOR.i) / sum(w.dsl.i)
           OR.dsl <- exp(lnOR.dsl)
           SE.lnOR.dsl <- 1 / sqrt(sum(w.dsl.i))
           SE.OR.dsl <- exp(SE.lnOR.dsl)
           lower.lnOR.dsl <- log(OR.dsl) - (z * SE.lnOR.dsl)
           upper.lnOR.dsl <- log(OR.dsl) + (z * SE.lnOR.dsl)
           lower.OR.dsl <- exp(lower.lnOR.dsl)
           upper.OR.dsl <- exp(upper.lnOR.dsl)
    
           # Higgins and Thompson (2002) H^2 and I^2 statistic:
           Hsq <- Q / (k - 1)
           lnHsq <- log(Hsq)
           if(Q > k) {
              lnHsq.se <- (1 * log(Q) - log(k - 1)) / (2 * sqrt(2 * Q) - sqrt((2 * (k - 3))))
           }
           if(Q <= k) {
              lnHsq.se <- sqrt((1/(2 * (k - 2))) * (1 - (1 / (3 * (k - 2)^2))))
           }
           lnHsq.l <- lnHsq - (z * lnHsq.se)
           lnHsq.u <- lnHsq + (z * lnHsq.se)
           Hsq.l <- exp(lnHsq.l)
           Hsq.u <- exp(lnHsq.u)
           Isq <- ((Hsq - 1) / Hsq) * 100
           Isq.l <- ((Hsq.l - 1) / Hsq.l) * 100
           Isq.u <- ((Hsq.u - 1) / Hsq.u) * 100
    
           # Test of effect. Code for p-value taken from z.test function in TeachingDemos package:
           effect.z <- log(OR.dsl) / SE.lnOR.dsl
           alternative <- match.arg(alternative)
           p.effect <- switch(alternative, two.sided = 2 * pnorm(abs(effect.z), lower.tail = FALSE), less = pnorm(effect.z), greater = pnorm(effect.z, lower.tail = FALSE))

           # Results:
           OR <- data.frame(OR.i, lower.OR.i, upper.OR.i)
           names(OR) <- c("est", "lower", "upper")
           
           OR.summary <- data.frame(OR.dsl, lower.OR.dsl, upper.OR.dsl)
           names(OR.summary) <- c("est", "lower", "upper")
        
           weights <- data.frame(w.iv.i, w.dsl.i)
           names(weights) <- c("inv.var", "dsl")

           Hsq <- data.frame(Hsq, Hsq.l, Hsq.u)
           names(Hsq) <- c("est", "lower", "upper")
        
           Isq <- data.frame(Isq, Isq.l, Isq.u)
           names(Isq) <- c("est", "lower", "upper")
        
           rval <- list(OR = OR, OR.summary = OR.summary, weights = weights,
           heterogeneity = c(Q = Q, df = df, p.value = p.heterogeneity),
           Hsq = Hsq,
           Isq = Isq,
           tau.sq = tau.sq,
           effect = c(z = effect.z, p.value = p.effect))
           return(rval)
           }
           
        else
        if(method == "risk.ratio")
           {RR.i <- (a.i / n.1i) / (c.i / n.2i) 
           lnRR.i <- log(RR.i)
           SE.lnRR.i <- sqrt(1/a.i + 1/c.i - 1/n.1i - 1/n.2i)
           SE.RR.i <- exp(SE.lnRR.i)
           lower.lnRR.i <- lnRR.i - (z * SE.lnRR.i)
           upper.lnRR.i <- lnRR.i + (z * SE.lnRR.i)
           lower.RR.i <- exp(lower.lnRR.i)
           upper.RR.i <- exp(upper.lnRR.i)
        
           # Weights:      
           w.i <- (b.i * c.i) / N.i
           w.iv.i <- 1 / (SE.lnRR.i)^2         

           # MH pooled risk ratios (relative effect measures combined in their natural scale):
           RR.mh <- sum(w.i * RR.i) / sum(w.i)
           lnRR.mh <- log(RR.mh)
           SE.lnRR.mh <- sqrt(P / (R. * S.))
           SE.RR.mh <- exp(SE.lnRR.mh)
           lower.lnRR.mh <- log(RR.mh) - (z * SE.lnRR.mh)
           upper.lnRR.mh <- log(RR.mh) + (z * SE.lnRR.mh)
           lower.RR.mh <- exp(lower.lnRR.mh)
           upper.RR.mh <- exp(upper.lnRR.mh)

           # DSL pooled risk ratios:
           Q <- sum(w.iv.i * (lnRR.i - lnRR.mh)^2)
           df <- k - 1
           p.heterogeneity <- 1 - pchisq(Q, df)
           tau.sq.upper <- Q - df
           tau.sq.lower <- sum(w.iv.i) - (sum((w.iv.i)^2) / sum(w.iv.i))

           # If Q is less than (k - 1) tau.sq equals zero:
           tau.sq <- ifelse(Q < (k - 1), 0, (tau.sq.upper / tau.sq.lower))
           w.dsl.i <- 1 / (((SE.lnRR.i)^2) + tau.sq)
           lnRR.dsl <- sum(w.dsl.i * lnRR.i) / sum(w.dsl.i)
           RR.dsl <- exp(lnRR.dsl)
           SE.lnRR.dsl <- 1 / sqrt(sum(w.dsl.i))
           SE.RR.dsl <- exp(SE.lnRR.dsl)
           lower.lnRR.dsl <- log(RR.dsl) - (z * SE.lnRR.dsl)
           upper.lnRR.dsl <- log(RR.dsl) + (z * SE.lnRR.dsl)
           lower.RR.dsl <- exp(lower.lnRR.dsl)
           upper.RR.dsl <- exp(upper.lnRR.dsl)
    
           # Higgins and Thompson (2002) H^2 and I^2 statistic:
           Hsq <- Q / (k - 1)
           lnHsq <- log(Hsq)
           if(Q > k) {
              lnHsq.se <- (1 * log(Q) - log(k - 1)) / (2 * sqrt(2 * Q) - sqrt((2 * (k - 3))))
           }
           if(Q <= k) {
              lnHsq.se <- sqrt((1/(2 * (k - 2))) * (1 - (1 / (3 * (k - 2)^2))))
           }
           lnHsq.l <- lnHsq - (z * lnHsq.se)
           lnHsq.u <- lnHsq + (z * lnHsq.se)
           Hsq.l <- exp(lnHsq.l)
           Hsq.u <- exp(lnHsq.u)
           Isq <- ((Hsq - 1) / Hsq) * 100
           Isq.l <- ((Hsq.l - 1) / Hsq.l) * 100
           Isq.u <- ((Hsq.u - 1) / Hsq.u) * 100
    
           # Test of effect. Code for p-value taken from z.test function in TeachingDemos package:
           effect.z <- log(RR.dsl) / SE.lnRR.dsl
           alternative <- match.arg(alternative)
           p.effect <- switch(alternative, two.sided = 2 * pnorm(abs(effect.z), lower.tail = FALSE), less = pnorm(effect.z), greater = pnorm(effect.z, lower.tail = FALSE))

           # Results:
           RR <- data.frame(RR.i, lower.RR.i, upper.RR.i)
           names(RR) <- c("est", "lower", "upper")
           
           RR.summary <- data.frame(RR.dsl, lower.RR.dsl, upper.RR.dsl)
           names(RR.summary) <- c("est", "lower", "upper")
        
           weights <- data.frame(w.iv.i, w.dsl.i)
           names(weights) <- c("inv.var", "dsl")

           Hsq <- data.frame(Hsq, Hsq.l, Hsq.u)
           names(Hsq) <- c("est", "lower", "upper")
        
           Isq <- data.frame(Isq, Isq.l, Isq.u)
           names(Isq) <- c("est", "lower", "upper")
        
           rval <- list(RR = RR, RR.summary = RR.summary, weights = weights,
           heterogeneity = c(Q = Q, df = df, p.value = p.heterogeneity),
           Hsq = Hsq,
           Isq = Isq,
           tau.sq = tau.sq,
           effect = c(z = effect.z, p.value = p.effect))
           return(rval)
          }
}