1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
epi.interaction <- function(model, coef, param = c("product", "dummy"), conf.level = 0.95){
N. <- 1 - ((1 - conf.level)/2)
z <- qnorm(N., mean = 0, sd = 1)
if (class(model)[1] != "glm" & class(model)[2] != "lm" & class(model)[1] != "clogit" & class(model)[1] != "coxph" & class(model)[1] != "geeglm" & class(model)[1] != "glmerMod")
stop("Error: model must be either a glm, clogit, coxph, geeglm or glmerMod object")
if(class(model)[1] == "glm" & class(model)[2] == "lm"){
theta1 <- as.numeric(model$coefficients[coef[1]])
theta2 <- as.numeric(model$coefficients[coef[2]])
theta3 <- as.numeric(model$coefficients[coef[3]])
theta1.se <- summary(model)$coefficients[coef[1],2]
theta2.se <- summary(model)$coefficients[coef[2],2]
theta3.se <- summary(model)$coefficients[coef[3],2]
}
if(class(model)[1] == "clogit" | class(model)[1] == "coxph"){
theta1 <- as.numeric(model$coefficients[coef[1]])
theta2 <- as.numeric(model$coefficients[coef[2]])
theta3 <- as.numeric(model$coefficients[coef[3]])
theta1.se <- summary(model)$coefficients[coef[1],3]
theta2.se <- summary(model)$coefficients[coef[2],3]
theta3.se <- summary(model)$coefficients[coef[3],3]
}
if(class(model)[1] == "geeglm" & class(model)[2] == "gee"){
theta1 <- as.numeric(model$coefficients[coef[1]])
theta2 <- as.numeric(model$coefficients[coef[2]])
theta3 <- as.numeric(model$coefficients[coef[3]])
theta1.se <- summary(model)$coefficients[coef[1],2]
theta2.se <- summary(model)$coefficients[coef[2],2]
theta3.se <- summary(model)$coefficients[coef[3],2]
}
if(class(model)[1] == "glmerMod"){
theta1 <- as.numeric(summary(model)$coefficients[coef[1]])
theta2 <- as.numeric(summary(model)$coefficients[coef[2]])
theta3 <- as.numeric(summary(model)$coefficients[coef[3]])
theta1.se <- as.numeric(summary(model)$coefficients[coef[1],2])
theta2.se <- as.numeric(summary(model)$coefficients[coef[2],2])
theta3.se <- as.numeric(summary(model)$coefficients[coef[3],2])
}
if(theta1 < 0 | theta2 < 0)
# Email from Edgar Brizuela 160224: The interpretation of the synergy index becomes difficult in settings in which one or both of the exposures is preventive rather than causative so that the denominator of S is negative (Knol et al., 2011). This issue does not arise with RERI RR because the denominator of RERI RR is never negative. The issue can be resolved with the synergy index S by recoding the exposures so that neither is preventive in the absence of the other (Knol et al., 2011)
warning("At least one of the two regression coefficients is less than zero (i.e., OR < 1). Estimate of SI will be invalid. Estimates of RERI and AP valid.")
if(param == "product"){
# RERI:
cov.mat <- vcov(model)
h1 <- exp(theta1 + theta2 + theta3) - exp(theta1)
h2 <- exp(theta1 + theta2 + theta3) - exp(theta2)
h3 <- exp(theta1 + theta2 + theta3)
reri.var <- (h1^2 * theta1.se^2) +
(h2^2 * theta2.se^2) +
(h3^2 * theta3.se^2) +
(2 * h1 * h2 * cov.mat[coef[1],coef[2]]) +
(2 * h1 * h3 * cov.mat[coef[1],coef[3]]) +
(2 * h2 * h3 * cov.mat[coef[2],coef[3]])
reri.se <- sqrt(reri.var)
reri.p <- exp(theta1 + theta2 + theta3) - exp(theta1) - exp(theta2) + 1
reri.l <- reri.p - (z * reri.se)
reri.u <- reri.p + (z * reri.se)
reri <- data.frame(est = reri.p, lower = reri.l, upper = reri.u)
# Multiplicative interaction:
mult.p <- as.numeric(exp(theta3))
mult.ci <- suppressMessages(confint(object = model, parm = coef[3]))
mult.l <- as.numeric(exp(mult.ci[1]))
mult.u <- as.numeric(exp(mult.ci[2]))
multiplicative <- data.frame(est = mult.p, lower = mult.l, upper = mult.u)
# APAB:
cov.mat <- vcov(model)
h1 <- ((exp(theta1 + theta2 + theta3) - exp(theta1)) / (exp(theta1 + theta2 + theta3))) - ((exp(theta1 + theta2 + theta3) - exp(theta1) - exp(theta2) + 1) / (exp(theta1 + theta2 + theta3)))
h2 <- ((exp(theta1 + theta2 + theta3) - exp(theta2)) / (exp(theta1 + theta2 + theta3))) - ((exp(theta1 + theta2 + theta3) - exp(theta1) - exp(theta2) + 1) / (exp(theta1 + theta2 + theta3)))
h3 <- 1 -((exp(theta1 + theta2 + theta3) - exp(theta1) - exp(theta2) + 1) / exp(theta1 + theta2 + theta3))
apab.var <- (h1^2 * theta1.se^2) +
(h2^2 * theta2.se^2) +
(h3^2 * theta3.se^2) +
(2 * h1 * h2 * cov.mat[coef[1],coef[2]]) +
(2 * h1 * h3 * cov.mat[coef[1],coef[3]]) +
(2 * h2 * h3 * cov.mat[coef[2],coef[3]])
apab.se <- sqrt(apab.var)
apab.p <- (exp(theta1 + theta2 + theta3) - exp(theta1) - exp(theta2) + 1) / exp(theta1 + theta2 + theta3)
apab.l <- apab.p - (z * apab.se)
apab.u <- apab.p + (z * apab.se)
apab <- data.frame(est = apab.p, lower = apab.l, upper = apab.u)
# S:
s.p <- (exp(theta1 + theta2 + theta3) - 1) / (exp(theta1) + exp(theta2) - 2)
cov.mat <- vcov(model)
# If model type is glm, cph or geeglm and point estimate of S is negative terminate analysis. Advise user to use a linear odds model:
if(class(model)[1] == "glm" & class(model)[2] == "lm" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
if(class(model)[1] == "clogit" & class(model)[2] == "coxph" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
if(class(model)[1] == "geeglm" & class(model)[2] == "gee" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
if(class(model)[1] == "glmerMod" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
h1 <- ((exp(theta1 + theta2 + theta3)) / (exp(theta1 + theta2 + theta3) - 1)) - (exp(theta1) / (exp(theta1) + exp(theta2) - 2))
h2 <- ((exp(theta1 + theta2 + theta3)) / (exp(theta1 + theta2 + theta3) - 1)) - (exp(theta2) / (exp(theta1) + exp(theta2) - 2))
h3 <- exp(theta1 + theta2 + theta3) / (exp(theta1 + theta2 + theta3) - 1)
lns.var <- h1^2 * theta1.se^2 +
h2^2 * theta2.se^2 +
h3^2 * theta3.se^2 +
(2 * h1 * h2 * cov.mat[coef[2],coef[1]]) +
(2 * h1 * h3 * cov.mat[coef[3],coef[1]]) +
(2 * h2 * h3 * cov.mat[coef[3],coef[2]])
lns.se <- sqrt(lns.var)
lns.p <- log(s.p)
lns.l <- lns.p - (z * lns.se)
lns.u <- lns.p + (z * lns.se)
s.l <- exp(lns.l)
s.u <- exp(lns.u)
s <- data.frame(est = s.p, lower = s.l, upper = s.u)
rval <- list(reri = reri, apab = apab, s = s, multiplicative = multiplicative)
}
if(param == "dummy"){
# RERI:
cov.mat <- vcov(model)
h1 <- -exp(theta1)
h2 <- -exp(theta2)
h3 <- exp(theta3)
reri.var <- (h1^2 * (cov.mat[coef[1],coef[1]])) +
(h2^2 * (cov.mat[coef[2],coef[2]])) +
(h3^2 * (cov.mat[coef[3],coef[3]])) +
(2 * h1 * h2 * cov.mat[coef[1],coef[2]]) +
(2 * h1 * h3 * cov.mat[coef[1],coef[3]]) +
(2 * h2 * h3 * cov.mat[coef[2],coef[3]])
reri.se <- sqrt(reri.var)
reri.p <- exp(theta3) - exp(theta1) - exp(theta2) + 1
reri.l <- reri.p - (z * reri.se)
reri.u <- reri.p + (z * reri.se)
reri <- data.frame(est = reri.p, lower = reri.l, upper = reri.u)
# Multiplicative interaction:
mult.p <- as.numeric(exp(theta3))
mult.ci <- suppressMessages(confint(object = model, parm = coef[3]))
mult.l <- as.numeric(exp(mult.ci[1]))
mult.u <- as.numeric(exp(mult.ci[2]))
multiplicative <- data.frame(est = mult.p, lower = mult.l, upper = mult.u)
# APAB:
cov.mat <- vcov(model)
h1 <- -exp(theta1 - theta3)
h2 <- -exp(theta2 - theta3)
h3 <- (exp(theta1) + exp(theta2) - 1) / exp(theta3)
apab.var <- (h1^2 * (cov.mat[coef[1],coef[1]])) +
(h2^2 * (cov.mat[coef[2],coef[2]])) +
(h3^2 * (cov.mat[coef[3],coef[3]])) +
(2 * h1 * h2 * cov.mat[coef[1],coef[2]]) +
(2 * h1 * h3 * cov.mat[coef[1],coef[3]]) +
(2 * h2 * h3 * cov.mat[coef[2],coef[3]])
apab.se <- sqrt(apab.var)
# apab.p <- exp(-theta3) - exp(theta1 - theta3) - exp(theta2 - theta3) + 1
# Equation 4 (Skrondal 2003):
apab.p <- (exp(theta3) - exp(theta1) - exp(theta2) + 1) / exp(theta3)
apab.l <- apab.p - (z * apab.se)
apab.u <- apab.p + (z * apab.se)
apab <- data.frame(est = apab.p, lower = apab.l, upper = apab.u)
# S:
s.p <- (exp(theta3) - 1) / (exp(theta1) + exp(theta2) - 2)
cov.mat <- vcov(model)
# If model type is glm or cph and point estimate of S is negative terminate analysis.
# Advise user to use a linear odds model:
if(class(model)[1] == "glm" & class(model)[2] == "lm" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
if(class(model)[1] == "clogit" & class(model)[2] == "coxph" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
if(class(model)[1] == "geeglm" & class(model)[2] == "gee" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
if(class(model)[1] == "glmerMod" & s.p < 0){
warning(paste("Point estimate of synergy index (S) is less than zero (", round(s.p, digits = 2), ").\n Confidence intervals cannot be calculated using the delta method. Consider re-parameterising as linear odds model.", sep = ""))
}
# Use delta method (Hosmer and Lemeshow 1992) if model type is glm, clogit or cph:
h1 <- -exp(theta1) / (exp(theta1) + exp(theta2) - 2)
h2 <- -exp(theta2) / (exp(theta1) + exp(theta2) - 2)
h3 <- exp(theta3) / (exp(theta3) - 1)
lns.var <- h1^2 * theta1.se^2 +
h2^2 * theta2.se^2 +
h3^2 * theta3.se^2 +
(2 * h1 * h2 * cov.mat[coef[2],coef[1]]) +
(2 * h1 * h3 * cov.mat[coef[3],coef[1]]) +
(2 * h2 * h3 * cov.mat[coef[3],coef[2]])
lns.se <- sqrt(lns.var)
lns.p <- log(s.p)
lns.l <- lns.p - (z * lns.se)
lns.u <- lns.p + (z * lns.se)
s.l <- exp(lns.l)
s.u <- exp(lns.u)
s <- data.frame(est = s.p, lower = s.l, upper = s.u)
rval <- list(reri = reri, apab = apab, s = s, multiplicative = multiplicative)
}
return(rval)
}
|