1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
epi.sscohortc <- function(N = NA, irexp1 = 0.25, irexp0 = 0.10, pexp = NA, n, power, r = 1, design = 1, sided.test = 2, finite.correction = FALSE, nfractional = FALSE, conf.level = 0.95){
alpha.new <- (1 - conf.level) / sided.test
z.alpha <- qnorm(1 - alpha.new, mean = 0, sd = 1)
if (!is.na(irexp1) & !is.na(n) & !is.na(power)){
stop("Error: at least one of exposed, n and power must be NA.")
}
# Sample size:
if(!is.na(irexp1) & !is.na(irexp0) & is.na(n) & !is.na(power)){
# Sample size estimate. From Woodward p 405:
z.beta <- qnorm(power, mean = 0, sd = 1)
# Risk ratio:
lambda <- irexp1 / irexp0
# Odds ratio:
psi <- (irexp1 / (1 - irexp1)) / (irexp0 / (1 - irexp0))
pi <- irexp0
pc <- (pi * ((r * lambda) + 1)) / (r + 1)
p1 <- (r + 1) / (r * (lambda - 1)^2 * pi^2)
p2 <- z.alpha * sqrt((r + 1) * pc * (1 - pc))
p3 <- z.beta * sqrt((lambda * pi * (1 - (lambda * pi))) + (r * pi * (1 - pi)))
n0 <- p1 * (p2 + p3)^2
# Account for the design effect:
n0 <- n0 * design
# Finite population correction:
n <- ifelse(is.na(N), n0, (n0 * N) / (n0 + (N - 1)))
if(nfractional == TRUE){
n.crude <- n
n.exp1 <- n / (r + 1) * r
n.exp0 <- n / (r + 1) * 1
n.total <- n.exp1 + n.exp0
}
if(nfractional == FALSE){
n.crude <- ceiling(n)
n.exp1 <- ceiling(n / (r + 1)) * r
n.exp0 <- ceiling(n / (r + 1)) * 1
n.total <- n.exp1 + n.exp0
}
rval <- list(n.total = n.total, n.exp1 = n.exp1, n.exp0 = n.exp0, power = power, irr = lambda, or = psi)
}
# Power:
else
if(!is.na(irexp1) & !is.na(irexp0) & !is.na(n) & is.na(power)){
# Study power. From Woodward p 409:
# Risk ratio:
lambda <- irexp1 / irexp0
# Odds ratio:
psi <- (irexp1 / (1 - irexp1)) / (irexp0 / (1 - irexp0))
pi <- irexp0
pc <- (pi * ((r * lambda) + 1)) / (r + 1)
# Account for the design effect:
n <- n / design
if(nfractional == TRUE){
n.exp1 <- (n / (r + 1)) * r
n.exp0 <- (n / (r + 1)) * 1
n.total <- n.exp1 + n.exp0
}
if(nfractional == FALSE){
n.exp1 <- ceiling((n / (r + 1)) * r)
n.exp0 <- ceiling((n / (r + 1)) * 1)
n.total <- n.exp1 + n.exp0
}
# Convert n (finite corrected sample size) to n0:
n0 <- ifelse(!is.na(N), (n * N - n) / (N - n), n)
t1 <- ifelse(lambda >= 1,
(pi * (lambda - 1) * sqrt(n0 * r)),
(pi * (1 - lambda) * sqrt(n0 * r)))
t2 <- z.alpha * (r + 1) * sqrt(pc * (1 - pc))
t3 <- (r + 1) * (lambda * pi * (1 - lambda * pi) + r * pi * (1 - pi))
z.beta <- (t1 - t2) / sqrt(t3)
power <- pnorm(z.beta, mean = 0, sd = 1)
rval <- list(n.total = n.total, n.exp1 = n.exp1, n.exp0 = n.exp0, power = power, irr = lambda, or = psi)
}
# Lambda:
else
if(is.na(irexp1) & !is.na(irexp0) & !is.na(n) & !is.na(power)){
# Risk ratio to be detected - requires a value for unexposed. From Woodward p 409:
z.beta <- qnorm(power, mean = 0, sd = 1)
pi <- irexp0
# Account for the design effect:
n <- n / design
n.exp1 <- (n / (r + 1)) * r
n.exp0 <- (n / (r + 1)) * 1
n.total <- n.exp1 + n.exp0
# Convert n (finite corrected sample size) to n0:
n0 <- ifelse(!is.na(N), (n * N - n) / (N - n), n)
Y <- r * n0 * pi^2
Z <- (r + 1) * pi * (z.alpha + z.beta)^2
a <- Y + (pi * Z)
b <- (2 * Y) + Z
c <- Y - (r * (1 - pi) * Z)
# Risk ratio:
lambda.pos <- (1 / (2 * a)) * (b + sqrt(b^2 - 4 * a * c))
lambda.neg <- (1 / (2 * a)) * (b - sqrt(b^2 - 4 * a * c))
rlambda.pos <- lambda.pos
rlambda.neg <- ifelse(lambda.neg < 0, 0, lambda.neg)
# From http://www.epigear.com/index_files/or2rr.html:
# s = prevalence of disease in the population
# p = prevalence of exposure in the population
# Prevalence of disease in the exposed, unexposed and population:
irexp1.pos <- lambda.pos * irexp0
irexp0.pos <- irexp0
s.pos <- (irexp1.pos + irexp0.pos) / 2
p.pos <- pexp
irexp1.neg <- lambda.neg * irexp0
irexp0.neg <- irexp0
s.neg <- (irexp1.neg + irexp0.neg) / 2
p.neg <- pexp
# Odds ratio:
psi.pos <- (lambda.pos * (1 - (s.pos / (p.pos * lambda.pos + 1 - p.pos)))) /
(1 - ((lambda.pos * s.pos) / (p.pos * lambda.pos + 1 - p.pos)))
psi.neg <- (lambda.neg * (1 - (s.neg / (p.neg * lambda.neg + 1 - p.neg)))) /
(1 - ((lambda.neg * s.neg) / (p.neg * lambda.neg + 1 - p.neg)))
rpsi.pos <- psi.pos
rpsi.neg <- ifelse(psi.neg < 0, 0, psi.neg)
rval <- list(n.total = n.total, n.exp1 = n.exp1, n.exp0 = n.exp0, power = power, irr = sort(c(rlambda.neg, rlambda.pos)), or = sort(c(rpsi.neg, rpsi.pos)))
}
rval
}
# epi.sscohortc(irexp1 = 0.25, irexp0 = 0.10, n = NA, power = 0.80, r = 1, design = 1, sided.test = 2, conf.level = 0.95)
# epi.sscohortc(irexp1 = 0.25, irexp0 = 0.10, n = 200, power = NA, r = 1, design = 1, sided.test = 2, conf.level = 0.95)
# epi.sscohortc(irexp1 = NA, irexp0 = 0.10, n = 200, power = 0.80, r = 1, design = 1, sided.test = 2, conf.level = 0.95)
|