1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
epi.ssequb <- function(treat, control, delta, n, power, r = 1, type = "equivalence", nfractional = FALSE, alpha){
if(type == "equality"){
# Sample size:
if (!is.na(treat) & !is.na(control) & !is.na(power) & is.na(n)){
z.alpha <- qnorm(1 - alpha / 2, mean = 0, sd = 1)
beta <- (1 - power)
z.beta <- qnorm(1 - beta, mean = 0, sd = 1)
pA <- treat; pB <- control
qA <- 1 - pA; qB <- 1 - pB
n.control <- (((pA * qA) + (pB * qB)) / r) * ((z.alpha + z.beta) / (pA - pB))^2
if(nfractional == TRUE){
n.control <- n.control
n.treat <- n.control * r
n.total <- n.treat + n.control
}
if(nfractional == FALSE){
n.control <- ceiling(n.control)
n.treat <- n.control * r
n.total <- n.treat + n.control
}
}
# Power:
if (!is.na(treat) & !is.na(control) & !is.na(n) & is.na(power) & !is.na(r) & !is.na(alpha)){
z.alpha <- qnorm(1 - alpha / 2, mean = 0, sd = 1)
pA <- treat; pB <- control
qA <- 1 - pA; qB <- 1 - pB
n.total <- n
n.control <- n.total / (r + 1)
n.treat <- n.total - n.control
z <- (pA - pB) / sqrt(((pA * qA) / n.treat) + ((pB * qB) / n.control))
power <- pnorm(z - z.alpha) + pnorm(-z - z.alpha)
if(nfractional == TRUE){
n.total <- n
n.control <- n.total / (r + 1)
n.treat <- n.total - n.control
}
if(nfractional == FALSE){
n.total <- n
n.control <- ceiling(n.total / (r + 1))
n.treat <- n.total - n.control
}
}
rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, power = power)
}
if(type == "equivalence"){
# Stop if a negative value for delta entered:
if (delta <= 0){
stop("For an equivalence trial delta must be greater than zero.")
}
# Sample size:
if (!is.na(treat) & !is.na(control) & !is.na(delta) & !is.na(power) & is.na(n)) {
z.alpha <- qnorm(1 - alpha, mean = 0, sd = 1)
beta <- (1 - power)
z.beta <- qnorm(1 - beta / 2, mean = 0, sd = 1)
pA <- treat; pB <- control
qA <- 1 - pA; qB <- 1 - pB
epsilon <- pA - pB
# Chow et al page 89, Equation 4.2.4:
# nB <- (z.alpha + z.beta)^2 / (delta - abs(epsilon))^2 * (((pA * qA) / r) + (pB * qB))
# http://powerandsamplesize.com/Calculators/Compare-2-Proportions/2-Sample-Equivalence:
nB <- (pA * qA / r + pB * qB) * ((z.alpha + z.beta) / (abs(pA - pB) - delta))^2
if(nfractional == TRUE){
n.treat <- nB * r
n.control <- nB
n.total <- n.treat + n.control
}
if(nfractional == FALSE){
n.treat <- ceiling(nB * r)
n.control <- ceiling(nB)
n.total <- n.treat + n.control
}
rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, delta = delta, power = power)
}
# Power:
if (!is.na(treat) & !is.na(control) & !is.na(delta) & !is.na(n) & is.na(power) & !is.na(r) & !is.na(alpha)) {
z.alpha <- qnorm(1 - alpha, mean = 0, sd = 1)
beta <- (1 - power)
z.beta <- qnorm(1 - beta / 2, mean = 0, sd = 1)
pA <- treat; pB <- control
qA <- 1 - pA; qB <- 1 - pB
# Work out the number of subjects in the control group. r equals the number in the treatment group divided by the number in the control group.
if(nfractional == TRUE){
n.treat <- n - 1 / (r + 1) * (n)
n.control <- 1 / (r + 1) * (n)
n.total <- n.treat + n.control
}
if(nfractional == FALSE){
n.treat <- n - ceiling(1 / (r + 1) * (n))
n.control <- ceiling(1 / (r + 1) * (n))
n.total <- n.treat + n.control
}
pA <- treat; pB <- control
qA <- 1 - pA; qB <- 1 - pB
z <- (abs(pA - pB) - delta) / sqrt(pA * qA / n)
power <- 2 * (pnorm(z - z.alpha) + pnorm(-z - z.alpha)) - 1
# http://powerandsamplesize.com/Calculators/Test-1-Proportion/1-Sample-Equivalence:
# z = (abs(pA - pB) - delta) / sqrt((pA * qA / nA) + (pB * qB / nB))
# power = 2 * (pnorm(z - z.alpha) + pnorm(-z - z.alpha)) - 1
# From user (Wu et al. 2008, page 433):
# z1 <- (delta - abs(pA - pB)) / sqrt((pA * qA / nA) + (pB * qB / nB))
# z2 <- (delta + abs(pA - pB)) / sqrt((pA * qA / nA) + (pB * qB / nB))
# power <- 1 - pnorm(-z1 + z.alpha) - pnorm(-z2 + z.alpha)
}
rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, delta = delta, power = power)
}
return(rval)
}
# Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman & Hall/CRC Biostatistics Series. page 89
# epi.equivb(treat = 0.65, control = 0.85, delta = 0.05, n = NA, power = 0.80, r = 1, alpha = 0.05)
# n.treat = 136, n.control = 136, n.total = 272
# Agrees with http://powerandsamplesize.com/Calculators/Compare-2-Proportions/2-Sample-Equivalence
# epi.equivb(treat = 0.65, control = 0.85, delta = 0.05, n = NA, power = 0.80, r = 1, alpha = 0.05)
# n.treat = 136, n.control = 136, n.total = 272
# Agrees with https://www.sealedenvelope.com/power/binary-equivalence/
# epi.equivb(treat = 0.65, control = 0.85, delta = 0.05, n = 200, power = NA, r = 1, alpha = 0.05)
|