File: epi.ssequb.R

package info (click to toggle)
r-cran-epir 2.0.80%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,332 kB
  • sloc: makefile: 5
file content (154 lines) | stat: -rw-r--r-- 5,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
epi.ssequb <- function(treat, control, delta, n, power, r = 1, type = "equivalence", nfractional = FALSE, alpha){
  
  if(type == "equality"){
    
    # Sample size:
    if (!is.na(treat) & !is.na(control) & !is.na(power) & is.na(n)){
    
      z.alpha <- qnorm(1 - alpha / 2, mean = 0, sd = 1)
      beta <- (1 - power)
      z.beta <- qnorm(1 - beta, mean = 0, sd = 1)
      
      pA <- treat; pB <- control
      qA <- 1 - pA; qB <- 1 - pB

      n.control <- (((pA * qA) + (pB * qB)) / r) * ((z.alpha + z.beta) / (pA - pB))^2
      
      if(nfractional == TRUE){
        n.control <- n.control
        n.treat <- n.control * r
        n.total <- n.treat + n.control
      }
      
      if(nfractional == FALSE){
        n.control <- ceiling(n.control)
        n.treat <- n.control * r
        n.total <- n.treat + n.control
      }
    }
    
    # Power:
    if (!is.na(treat) & !is.na(control) & !is.na(n) & is.na(power) & !is.na(r) & !is.na(alpha)){
      z.alpha <- qnorm(1 - alpha / 2, mean = 0, sd = 1)
      pA <- treat; pB <- control
      qA <- 1 - pA; qB <- 1 - pB
      
      n.total <- n
      n.control <- n.total / (r + 1)
      n.treat <- n.total - n.control
      
      z <- (pA - pB) / sqrt(((pA * qA) / n.treat) + ((pB * qB) / n.control))
      power <- pnorm(z - z.alpha) + pnorm(-z - z.alpha)
      
      if(nfractional == TRUE){
        n.total <- n
        n.control <- n.total / (r + 1)
        n.treat <- n.total - n.control
      }
      
      if(nfractional == FALSE){
        n.total <- n
        n.control <- ceiling(n.total / (r + 1))
        n.treat <- n.total - n.control
      }
    }
    
    rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, power = power)
    
  }
  
  if(type == "equivalence"){

    # Stop if a negative value for delta entered:
    if (delta <= 0){
      stop("For an equivalence trial delta must be greater than zero.")
    }

    # Sample size:
    if (!is.na(treat) & !is.na(control) & !is.na(delta) & !is.na(power) & is.na(n)) {
      
      z.alpha <- qnorm(1 - alpha, mean = 0, sd = 1)
      beta <- (1 - power)
      z.beta <- qnorm(1 - beta / 2, mean = 0, sd = 1)
      
      pA <- treat; pB <- control
      qA <- 1 - pA; qB <- 1 - pB
      epsilon <- pA - pB
      
      # Chow et al page 89, Equation 4.2.4:
      # nB <- (z.alpha + z.beta)^2 / (delta - abs(epsilon))^2 * (((pA * qA) / r) + (pB * qB))
      
      # http://powerandsamplesize.com/Calculators/Compare-2-Proportions/2-Sample-Equivalence:
      nB <- (pA * qA / r + pB * qB) * ((z.alpha + z.beta) / (abs(pA - pB) - delta))^2
      
      if(nfractional == TRUE){
        n.treat <- nB * r
        n.control <- nB
        n.total <- n.treat + n.control
      }
      
      if(nfractional == FALSE){
        n.treat <- ceiling(nB * r)
        n.control <- ceiling(nB)
        n.total <- n.treat + n.control
      }

      rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, delta = delta, power = power)
    }
    
    # Power:
    if (!is.na(treat) & !is.na(control) & !is.na(delta) & !is.na(n) & is.na(power) & !is.na(r) & !is.na(alpha)) {
      
      z.alpha <- qnorm(1 - alpha, mean = 0, sd = 1)
      beta <- (1 - power)
      z.beta <- qnorm(1 - beta / 2, mean = 0, sd = 1)
      
      pA <- treat; pB <- control
      qA <- 1 - pA; qB <- 1 - pB
      
      # Work out the number of subjects in the control group. r equals the number in the treatment group divided by the number in the control group.
      
      if(nfractional == TRUE){
        n.treat <- n - 1 / (r + 1) * (n)
        n.control <- 1 / (r + 1) * (n)
        n.total <- n.treat + n.control
      }
      
      if(nfractional == FALSE){
        n.treat <- n - ceiling(1 / (r + 1) * (n))
        n.control <- ceiling(1 / (r + 1) * (n))
        n.total <- n.treat + n.control
      }
      
      pA <- treat; pB <- control
      qA <- 1 - pA; qB <- 1 - pB
      
      z <- (abs(pA - pB) - delta) / sqrt(pA * qA / n)
      power <- 2 * (pnorm(z - z.alpha) + pnorm(-z - z.alpha)) - 1

      # http://powerandsamplesize.com/Calculators/Test-1-Proportion/1-Sample-Equivalence:
      # z = (abs(pA - pB) - delta) / sqrt((pA * qA / nA) + (pB * qB / nB))
      # power = 2 * (pnorm(z - z.alpha) + pnorm(-z - z.alpha)) - 1
      
      # From user (Wu et al. 2008, page 433):
      # z1 <- (delta - abs(pA - pB)) / sqrt((pA * qA / nA) + (pB * qB / nB))
      # z2 <- (delta + abs(pA - pB)) / sqrt((pA * qA / nA) + (pB * qB / nB))
      # power <- 1 - pnorm(-z1 + z.alpha) - pnorm(-z2 + z.alpha)
    }
    rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, delta = delta, power = power)
  }
  
  return(rval)
}  

# Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman & Hall/CRC Biostatistics Series. page 89

# epi.equivb(treat = 0.65, control = 0.85, delta = 0.05, n = NA, power = 0.80, r = 1, alpha = 0.05)
# n.treat = 136, n.control = 136, n.total = 272
# Agrees with http://powerandsamplesize.com/Calculators/Compare-2-Proportions/2-Sample-Equivalence

# epi.equivb(treat = 0.65, control = 0.85, delta = 0.05, n = NA, power = 0.80, r = 1, alpha = 0.05)
# n.treat = 136, n.control = 136, n.total = 272
# Agrees with https://www.sealedenvelope.com/power/binary-equivalence/

# epi.equivb(treat = 0.65, control = 0.85, delta = 0.05, n = 200, power = NA, r = 1, alpha = 0.05)