1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
epi.ssxsectn <- function(N = NA, pdexp1, pdexp0, pexp = NA, n, power, r = 1, design = 1, sided.test = 2, nfractional = FALSE, conf.level = 0.95){
alpha.new <- (1 - conf.level) / sided.test
z.alpha <- qnorm(1 - alpha.new, mean = 0, sd = 1)
if (!is.na(pdexp1) & !is.na(n) & !is.na(power)){
stop("Error: at least one of exposed, n and power must be NA.")
}
# Sample size:
if(!is.na(pdexp1) & !is.na(pdexp0) & is.na(n) & !is.na(power)){
# Sample size estimate. From Woodward p 405:
z.beta <- qnorm(power, mean = 0, sd = 1)
# Prevalence ratio:
lambda <- pdexp1 / pdexp0
# Odds ratio:
psi <- (pdexp1 / (1 - pdexp1)) / (pdexp0 / (1 - pdexp0))
pi <- pdexp0
pc <- (pi * ((r * lambda) + 1)) / (r + 1)
p1 <- (r + 1) / (r * (lambda - 1)^2 * pi^2)
p2 <- z.alpha * sqrt((r + 1) * pc * (1 - pc))
p3 <- z.beta * sqrt((lambda * pi * (1 - (lambda * pi))) + (r * pi * (1 - pi)))
n0 <- p1 * (p2 + p3)^2
# Account for the design effect:
n0 <- n0 * design
# Finite population correction:
n <- ifelse(is.na(N), n0, (n0 * N) / (n0 + (N - 1)))
n.exp1 <- ifelse(nfractional == TRUE, n / (r + 1) * r, ceiling(n / (r + 1) * r))
n.exp0 <- ifelse(nfractional == TRUE, n / (r + 1) * 1, ceiling(n / (r + 1) * 1))
n.total <- n.exp1 + n.exp0
rval <- list(n.total = n.total, n.exp1 = n.exp1, n.exp0 = n.exp0, power = power, pr = lambda, or = psi)
}
# Power:
else
if(!is.na(pdexp1) & !is.na(pdexp0) & !is.na(n) & is.na(power)){
# Study power. From Woodward p 409:
# Prevalence ratio:
lambda <- pdexp1 / pdexp0
# Odds ratio:
psi <- (pdexp1 / (1 - pdexp1)) / (pdexp0 / (1 - pdexp0))
pi <- pdexp0
pc <- (pi * ((r * lambda) + 1)) / (r + 1)
if(nfractional == TRUE){
n.exp1 <- n / (r + 1) * r
n.exp0 <- n / (r + 1) * 1
n.total <- n.exp1 + n.exp0
}
if(nfractional == FALSE){
n.exp1 <- ceiling(n / (r + 1) * r)
n.exp0 <- ceiling(n / (r + 1) * 1)
n.total <- n.exp1 + n.exp0
}
# Convert n (finite corrected sample size) to n0:
n0 <- ifelse(!is.na(N), (n * N - n) / (N - n), n)
t1 <- ifelse(lambda >= 1,
(pi * (lambda - 1) * sqrt(n0 * r)),
(pi * (1 - lambda) * sqrt(n0 * r)))
t2 <- z.alpha * (r + 1) * sqrt(pc * (1 - pc))
t3 <- (r + 1) * (lambda * pi * (1 - lambda * pi) + r * pi * (1 - pi))
z.beta <- (t1 - t2) / sqrt(t3)
power <- pnorm(z.beta, mean = 0, sd = 1)
rval <- list(n.total = n.total, n.exp1 = n.exp1, n.exp0 = n.exp0, power = power, pr = lambda, or = psi)
}
# Lambda:
else
if(is.na(pdexp1) & !is.na(pdexp0) & !is.na(n) & !is.na(power)){
# Risk ratio to be detected - requires an estimate of prevalence of exposure in the unexposed.
# From Woodward p 409:
z.beta <- qnorm(power, mean = 0, sd = 1)
pi <- pdexp0
if(nfractional == TRUE){
n.exp1 <- n / (r + 1) * r
n.exp0 <- n / (r + 1) * 1
n.total <- n.exp1 + n.exp0
}
if(nfractional == FALSE){
n.exp1 <- ceiling(n / (r + 1) * r)
n.exp0 <- ceiling(n / (r + 1) * 1)
n.total <- n.exp1 + n.exp0
}
# Convert n (finite corrected sample size) to n0:
n0 <- ifelse(!is.na(N), (n * N - n) / (N - n), n)
Y <- r * n0 * pi^2
Z <- (r + 1) * pi * (z.alpha + z.beta)^2
a <- Y + (pi * Z)
b <- (2 * Y) + Z
c <- Y - (r * (1 - pi) * Z)
# Risk ratio:
lambda.pos <- (1 / (2 * a)) * (b + sqrt(b^2 - 4 * a * c))
lambda.neg <- (1 / (2 * a)) * (b - sqrt(b^2 - 4 * a * c))
rlambda.pos <- lambda.pos
rlambda.neg <- ifelse(lambda.neg < 0, 0, lambda.neg)
# From http://www.epigear.com/index_files/or2rr.html:
# s = prevalence of disease in the population
# p = prevalence of exposure in the population
# Prevalence of disease in the exposed, unexposed and population:
pdexp1.pos <- lambda.pos * pdexp0
pdexp0.pos <- pdexp0
s.pos <- (pdexp1.pos + pdexp0.pos) / 2
p.pos <- pexp
pdexp1.neg <- lambda.neg * pdexp0
pdexp0.neg <- pdexp0
s.neg <- (pdexp1.neg + pdexp0.neg) / 2
p.neg <- pexp
# Odds ratio:
psi.pos <- (lambda.pos * (1 - (s.pos / (p.pos * lambda.pos + 1 - p.pos)))) /
(1 - ((lambda.pos * s.pos) / (p.pos * lambda.pos + 1 - p.pos)))
psi.neg <- (lambda.neg * (1 - (s.neg / (p.neg * lambda.neg + 1 - p.neg)))) /
(1 - ((lambda.neg * s.neg) / (p.neg * lambda.neg + 1 - p.neg)))
rpsi.pos <- psi.pos
rpsi.neg <- ifelse(psi.neg < 0, 0, psi.neg)
rval <- list(n.total = n.total, n.exp1 = n.exp1, n.exp0 = n.exp0, power = power, pr = sort(c(rlambda.neg, rlambda.pos)), or = sort(c(rpsi.neg, rpsi.pos)))
}
rval
}
# epi.ssxsection(pdexp1 = 0.25, pdexp0 = 0.10, pexp = 0.05, n = NA, power = 0.80, r = 1, design = 1, sided.test = 2, conf.level = 0.95)
# epi.ssxsection(pdexp1 = 0.25, pdexp0 = 0.10, pexp = 0.05, n = 200, power = NA, r = 1, design = 1, sided.test = 2, conf.level = 0.95)
# epi.ssxsection(pdexp1 = NA, pdexp0 = 0.10, pexp = 0.05, n = 200, power = 0.80, r = 1, design = 1, sided.test = 2, conf.level = 0.95)
|