1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
rsu.dxtest <- function(se, sp, covar.pos, covar.neg, interpretation = "series"){
# Objects se, sp and covar must be of length 2 or 3:
if(length(se) < 2 | length(se) > 3) stop('se must be a vector of length 2 or 3.')
if(length(sp) < 2 | length(sp) > 3) stop('sp must be a vector of length 2 or 3.')
if(length(se) == 2 & length(covar.pos) != 1)
stop('covar.pos must be a vector of length 1 for assessment of two diagnostic tests.')
if(length(se) == 3 & length(covar.pos) != 4)
stop('covar.pos must be a vector of length 4 for assessment of three diagnostic tests.')
# Two tests:
if(length(se) == 2 & length(sp == 2)){
# Values of se and sp must range between 0 and 1:
if(se[1] < 0 | se[1] > 1) stop('se must be a number between 0 and 1.')
if(sp[1] < 0 | sp[1] > 1) stop('sp must be a number between 0 and 1.')
if(se[2] < 0 | se[2] > 1) stop('se must be a number between 0 and 1.')
if(sp[2] < 0 | sp[2] > 1) stop('sp must be a number between 0 and 1.')
# First element of covar is covariance for D+ group, second element is covariance for D- group.
# See Dohoo, Martin and Stryhn (2009) page 111.
# Minimums and maximums for the conditional covariance for sensitivity.
# See page 111 Gardner et al. (2000):
min.covse <- max(-1 * (1 - se[1]) * (1 - se[2]), -se[1] * se[2])
max.covse <- min(se[1] * (1 - se[2]), se[2] * (1 - se[1]))
# Minimums and maximums for the conditional covariance for specificity.
min.covsp <- max(-1 * (1 - sp[1]) * (1 - sp[2]), -sp[1] * sp[2])
max.covsp <- min(sp[1] * (1 - sp[2]), sp[2] * (1 - sp[1]))
# Check the values of covar entered by the user and return error if outside range:
if(covar.pos[1] < min.covse | covar.pos[1] > max.covse)
stop('The covariance estimate for diagnostic test sensitivity is outside of the plausible range given the sensitivities of the two tests.')
if(covar.neg[1] < min.covsp | covar.neg[1] > max.covsp)
stop('The covariance estimate for diagnostic test specificity is outside of the plausible range given the specificities of the two tests.')
# Series interpretation:
if(interpretation == "series") {
# Sensitivity and specificity assuming tests are INDEPENDENT.
# Equations 5.18 and 5.19 Dohoo et al. (2009) page 111:
sei <- se[1] * se[2]
spi <- sp[1] + sp[2] - (sp[1] * sp[2])
# Name each of the covariances to make code easier to read:
c012.pos <- covar.pos[1]
c012.neg <- covar.neg[1]
# Sensitivity and specificity assuming tests are DEPENDENT.
# Equations 5.24 and 5.25 Dohoo et al. (2009) page 113:
sed <- se[1] * se[2] + c012.pos
sed <- ifelse(sed < 0, 0, sed)
sed <- ifelse(sed > 1, 1, sed)
spd <- 1 - (1 - sp[1]) * (1 - sp[2]) - c012.neg
spd <- ifelse(spd < 0, 0, spd)
spd <- ifelse(sed > 1, 1, spd)
}
# Parallel interpretation:
if(interpretation == "parallel") {
# Sensitivity and specificity assuming tests are INDEPENDENT.
# Equations 5.16 and 5.17 Dohoo et al. (2009) page 111:
sei <- se[1] + se[2] - (se[1] * se[2])
spi <- sp[1] * sp[2]
# Name each of the covariances to make code easier to read:
c012.pos <- covar.pos[1]
c012.neg <- covar.neg[1]
# Sensitivity and specificity assuming tests are DEPENDENT.
# Equations 5.22 and 5.23 Dohoo et al. (2009) page 113:
sed <- 1 - (1 - se[1]) * (1 - se[2]) - c012.pos
sed <- ifelse(sed < 0, 0, sed)
sed <- ifelse(sed > 1, 1, sed)
spd <- sp[1] * sp[2] + c012.neg
spd <- ifelse(spd < 0, 0, spd)
spd <- ifelse(sed > 1, 1, spd)
}
}
# Three tests.
if(length(se) == 3 & length(sp == 3)){
# Values of se and sp must range between 0 and 1:
if(se[1] < 0 | se[1] > 1) stop('se must be a number between 0 and 1.')
if(sp[1] < 0 | sp[1] > 1) stop('sp must be a number between 0 and 1.')
if(se[2] < 0 | se[2] > 1) stop('se must be a number between 0 and 1.')
if(sp[2] < 0 | sp[2] > 1) stop('sp must be a number between 0 and 1.')
if(se[3] < 0 | se[3] > 1) stop('se must be a number between 0 and 1.')
if(sp[3] < 0 | sp[3] > 1) stop('sp must be a number between 0 and 1.')
# Minimums and maximums for the conditional covariance for sensitivity.
# See page 86 Toft et al. (2007):
min.covse <- max(-1 * (1 - se[2]) * (1 - se[3]), -se[2] * se[3])
max.covse <- min(se[2] * (1 - se[3]), se[2] * (1 - se[3]))
# Minimums and maximums for the conditional covariance for specificity.
min.covsp <- max(-1 * (1 - sp[2]) * (1 - sp[3]), -sp[2] * sp[3])
max.covsp <- min(sp[2] * (1 - sp[3]), sp[3] * (1 - sp[2]))
# Check the values of covar entered by the user and return error if outside range:
if(covar.pos[1] < min.covse | covar.pos[1] > max.covse)
stop('The covariance estimate for diagnostic test sensitivity is outside of the plausible range given the sensitivities of the three tests.')
if(covar.pos[2] < min.covse | covar.pos[2] > max.covse)
stop('The covariance estimate for diagnostic test sensitivity is outside of the plausible range given the sensitivities of the three tests.')
if(covar.pos[3] < min.covse | covar.pos[3] > max.covse)
stop('The covariance estimate for diagnostic test sensitivity is outside of the plausible range given the sensitivities of the three tests.')
if(covar.pos[4] < min.covse | covar.pos[4] > max.covse)
stop('The covariance estimate for diagnostic test specificity is outside of the plausible range given the specificities of the three tests.')
if(covar.neg[1] < min.covsp | covar.neg[1] > max.covsp)
stop('The covariance estimate for diagnostic test specificity is outside of the plausible range given the specificities of the three tests.')
if(covar.neg[2] < min.covsp | covar.neg[2] > max.covsp)
stop('The covariance estimate for diagnostic test specificity is outside of the plausible range given the specificities of the three tests.')
if(covar.neg[3] < min.covsp | covar.neg[3] > max.covsp)
stop('The covariance estimate for diagnostic test specificity is outside of the plausible range given the specificities of the three tests.')
if(covar.neg[4] < min.covsp | covar.neg[4] > max.covsp)
stop('The covariance estimate for diagnostic test specificity is outside of the plausible range given the specificities of the three tests.')
# Series interpretation:
if(interpretation == "series"){
# Sensitivity assuming tests are INDEPENDENT:
sei <- se[1] * se[2] * se[3]
# Specificity assuming tests are INDEPENDENT:
spi <- 1 - ((1 - sp[1]) * (1 - sp[2]) * (1 - sp[3]))
# Name each of the covariances to make code easier to read:
c012.pos <- covar.pos[1]
c013.pos <- covar.pos[2]
c023.pos <- covar.pos[3]
c123.pos <- covar.pos[4]
c012.neg <- covar.neg[1]
c013.neg <- covar.neg[2]
c023.neg <- covar.neg[3]
c123.neg <- covar.neg[4]
# Sensitivity assuming tests are DEPENDENT.
# Jones et al. (2009) Equation 7, page 857:
sed <- (se[1] * se[2] * se[3]) + (se[1] * c023.pos) + (se[2] * c013.pos) + (se[3] * c012.pos) - c123.pos
sed <- ifelse(sed < 0, 0, sed)
sed <- ifelse(sed > 1, 1, sed)
# Dohoo et al. (2009) Equation 5.24, page 113:
# sed <- se[1] * (se[2] * se[3] + c23.pos)
# Specificity assuming tests are DEPENDENT.
spd <- 1 - (((1 - sp[1]) * (1 - sp[2]) * (1 - sp[3])) + ((1 - sp[1]) * c023.neg) + ((1 - sp[2]) * c013.neg) + ((1 - sp[3]) * c013.neg)) + c123.neg
spd <- ifelse(spd < 0, 0, spd)
spd <- ifelse(spd > 1, 1, spd)
# Dohoo et al. (2009) Equation 5.24, page 113:
# spd <- 1 - (1 - sp[1]) * ((1 - sp[2]) * (1 - sp[3]) + c23.neg)
}
# Parallel interpretation:
if (interpretation == "parallel") {
# Sensitivity assuming tests are INDEPENDENT:
sei <- 1 - (1 - se[1]) * ((1 - se[2]) * (1 - se[3]))
# Specificity assuming tests are INDEPENDENT:
spi <- sp[1] * sp[2] * sp[3]
# Name each of the covariances to make code easier to read:
c012.pos <- covar.pos[1]
c013.pos <- covar.pos[2]
c023.pos <- covar.pos[3]
c123.pos <- covar.pos[4]
c012.neg <- covar.neg[1]
c013.neg <- covar.neg[2]
c023.neg <- covar.neg[3]
c123.neg <- covar.neg[4]
# Sensitivity assuming tests are DEPENDENT:
sed <- 1 - (((1 - se[1]) * (1 - se[2]) * (1 - se[3])) + ((1 - se[1]) * c023.pos) + ((1 - se[2]) * c013.pos) + ((1 - se[3]) * c013.pos)) + c123.pos
sed <- ifelse(sed < 0, 0, sed)
sed <- ifelse(sed > 1, 1, sed)
# Dohoo et al. (2009) Equation 5.22, page 113:
# sed <- 1 - (1 - se[1]) * ((1 - se[2]) * (1 - se[3]) + c023.pos)
# Specificity assuming tests are DEPENDENT:
spd <- (sp[1] * sp[2] * sp[3]) + (sp[1] * c023.neg) + (sp[2] * c013.neg) + (sp[3] * c012.neg) - c123.neg
spd <- ifelse(spd < 0, 0, spd)
spd <- ifelse(spd > 1, 1, spd)
# Dohoo et al. (2009) Equation 5.23, page 113:
# spd <- sp[1] * (sp[2] * sp[3] + c023.neg)
}
}
independent <- data.frame(se = sei, sp = spi)
dependent <- data.frame(se = sed, sp = spd)
rval <- list(independent = independent, dependent = dependent)
return(rval)
}
|