File: epi.cp.Rd

package info (click to toggle)
r-cran-epir 2.0.80%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,332 kB
  • sloc: makefile: 5
file content (60 lines) | stat: -rw-r--r-- 2,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
\name{epi.cp}

\alias{epi.cp}

\title{
Extract unique covariate patterns from a data set
}

\description{
Extract the set of unique patterns from a set of covariates (explanatory variables).
}

\usage{
epi.cp(dat)
}

\arguments{
  \item{dat}{an \emph{i} row by \emph{j} column data frame where the \emph{i} rows represent individual observations and the \emph{m} columns represent a set of \emph{m} covariates. The function allows for one or more covariates for each observation.}
}

\details{
This function extracts the \emph{k} unique covariate patterns in a data set comprised of \emph{i} observations, labelling them from 1 to \emph{k}. The frequency of occurrence of each covariate pattern is listed. A vector of length \emph{i} is also returned, listing the 1:\emph{k} covariate pattern identifier for each observation.
}

\value{
A list containing the following:
  \item{cov.pattern}{a data frame with columns: \code{id} the unique covariate pattern identifier (labelled 1 to \emph{k}), \code{n} the number of occasions each of the listed covariate pattern appears in the data, and the unique covariate combinations.}
  \item{id}{a vector of length \emph{i} listing the 1:\emph{k} covariate pattern identifier for each observation.}
}

\author{
Thanks to Johann Popp and Mathew Jay for providing code and suggestions to enhance the utility of this function.
}

\references{
Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown, Prince Edward Island, Canada.
}

\examples{
## EXAMPLE 1:

## Generate a set of covariates:
set.seed(seed = 1234)
obs <- round(runif(n = 100, min = 0, max = 1), digits = 0)
v1 <- round(runif(n = 100, min = 0, max = 4), digits = 0)
v2 <- round(runif(n = 100, min = 0, max = 4), digits = 0)
dat.df01 <- data.frame(obs, v1, v2)

dat.glm01 <- glm(obs ~ v1 + v2, family = binomial, data = dat.df01)
dat.mf01 <- model.frame(dat.glm01)

## Covariate pattern. Drop the first column of dat.mf01 (since column 1 is the
## outcome variable:
epi.cp(dat.mf01[,2:3])

## There are 25 covariate patterns in this data set. Subject 100 has
## covariate pattern 21. 
}

\keyword{univar}