1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
`LRtest.Rm` <-
function(object, splitcr = "median", se = TRUE)
{
# performs Andersen LR-test
# object... object of class RM
# splitcr... splitting criterion for LR-groups. "all.r" corresponds to a complete
# raw score split (r=1,...,k-1), "median" to a median raw score split,
# "mean" corresponds to the mean raw score split.
# optionally also a vector of length n for group split can be submitted.
# se...whether standard errors should be computed
call<-match.call()
spl.gr<-NULL
X.original<-object$X
if((length(splitcr) > 1) & is.character(splitcr)){ # if splitcr is character vector, treated as factor
splitcr<-as.factor(splitcr)
}
if(is.factor(splitcr)){
spl.nam<-deparse(substitute(splitcr))
spl.lev<-levels(splitcr)
spl.gr<-paste(spl.nam,spl.lev,sep=" ")
splitcr<-unclass(splitcr)
}
numsplit<-is.numeric(splitcr)
if (any(is.na(object$X))) {
if (!numsplit && splitcr=="mean") { #mean split
spl.gr<-c("Raw Scores < Mean", "Raw Scores >= Mean")
X<-object$X
# calculates index for NA groups
# from person.parameter.eRm
dichX <- ifelse(is.na(X),1,0)
strdata <- apply(dichX,1,function(x) {paste(x,collapse="")})
gmemb <- as.vector(data.matrix(data.frame(strdata)))
gindx<-unique(gmemb)
rsum.all<-rowSums(X,na.rm=T)
grmeans<-tapply(rsum.all,gmemb,mean) #sorted
ngr<-table(gmemb) #sorted
m.all<-rep(grmeans,ngr) #sorted,expanded
rsum.all<-rsum.all[order(gmemb)]
spl<-ifelse(rsum.all<m.all,1,2)
splitcr<-spl
object$X<-X[order(gmemb),]
}
if (!numsplit && splitcr=="median") { #median split
spl.gr<-c("Raw Scores <= Median", "Raw Scores > Median")
# cat("Warning message: Persons with median raw scores are assigned to the lower raw score group!\n")
X<-object$X
# calculates index for NA groups
# from person.parameter.eRm
dichX <- ifelse(is.na(X),1,0)
strdata <- apply(dichX,1,function(x) {paste(x,collapse="")})
gmemb <- as.vector(data.matrix(data.frame(strdata)))
gindx<-unique(gmemb)
rsum.all<-rowSums(X,na.rm=T)
grmed<-tapply(rsum.all,gmemb,median) #sorted
ngr<-table(gmemb) #sorted
m.all<-rep(grmed,ngr) #sorted,expanded
rsum.all<-rsum.all[order(gmemb)]
spl<-ifelse(rsum.all<=m.all,1,2)
splitcr<-spl
object$X<-X[order(gmemb),]
}
}
if (!is.numeric(splitcr)) {
if (splitcr=="all.r") { #full raw score split ### begin MjM 2012-03-18
rvind <- rowSums(object$X, na.rm=TRUE) #person raw scoobject
excl_0_k <- (rvind > 0) & (rvind < sum(apply(object$X, 2, max, na.rm=T)))
Xlist <- by(object$X[excl_0_k,], rvind[excl_0_k], function(x) x)
names(Xlist) <- as.list(paste("Raw Score =", sort(unique(rvind[excl_0_k]))))
spl.gr <- unlist(names(Xlist))
} ### end MjM 2012-03-18
if (splitcr=="median") { #median split
spl.gr<-c("Raw Scores <= Median", "Raw Scores > Median")
#removed rh 2010-12-17
#cat("Warning message: Persons with median raw scores are assigned to the lower raw score group!\n")
rv <- apply(object$X,1,sum,na.rm=TRUE)
rvsplit <- median(rv)
rvind <- rep(0,length(rv))
rvind[rv > rvsplit] <- 1 #group with highraw scoobject
Xlist <- by(object$X,rvind,function(x) x)
names(Xlist) <- list("low","high")
}
if (splitcr=="mean") { #mean split
spl.gr<-c("Raw Scores < Mean", "Raw Scores >= Mean")
rv <- apply(object$X,1,sum,na.rm=TRUE)
rvsplit <- mean(rv)
rvind <- rep(0,length(rv))
rvind[rv > rvsplit] <- 1 #group with highraw scoobject
Xlist <- by(object$X,rvind,function(x) x)
names(Xlist) <- list("low","high")
}
}
if (is.numeric(splitcr)) { #manual raw score split
spl.nam<-deparse(substitute(splitcr))
if (length(splitcr)!=dim(object$X)[1]) stop("Mismatch between length of split vector and number of persons!")
if (any(is.na(splitcr))) stop("Split vector should not contain NA's")
rvind <- splitcr
Xlist <- by(object$X,rvind, function(x) x)
names(Xlist) <- as.list(sort(unique(splitcr)))
if(is.null(spl.gr)){
spl.lev<-names(Xlist)
spl.gr<-paste(spl.nam,spl.lev,sep=" ")
}
}
#----------item to be deleted---------------
del.pos.l <- lapply(Xlist, function(x) {
it.sub <- datcheck.LRtest(x,object$X,object$model) #items to be removed within subgroup
})
del.pos <- unique(unlist(del.pos.l))
if (length(del.pos) >= (ncol(object$X)-1)) {
stop("\nNo items with appropriate response patterns left to perform LR-test!\n")
}
if(length(del.pos) > 0){ ### begin MjM 2013-01-27
warning(paste0(
"\n",
prettyPaste("The following items were excluded due to inappropriate response patterns within subgroups:"),
"\n",
paste(colnames(object$X)[del.pos], collapse=" "),
"\n\n",
prettyPaste("Full and subgroup models are estimated without these items!")
), immediate.=TRUE)
} ### end MjM 2013-01-27
if (length(del.pos) > 0) {
X.el <- object$X[,-(del.pos)]
} else {
X.el <- object$X
}
if(ifelse(length(splitcr) == 1, splitcr != "all.r", TRUE)){ ### begin MjM 2012-03-18 # for all cases except "all.r"
Xlist.n <- by(X.el, rvind, function(y) y)
names(Xlist.n) <- names(Xlist)
if (length(del.pos) > 0) Xlist.n <- c(Xlist.n,list(X.el)) # X.el added since we must refit whole group without del.pos items
} else {
Xlist.n <- by(X.el[excl_0_k,], rvind[excl_0_k], function(y) y)
names(Xlist.n) <- names(Xlist)
Xlist.n <- c(Xlist.n,list(X.el[excl_0_k,])) # X.el added since we must refit whole group without del.pos items
} ### end MjM 2012-03-18
if (object$model=="RM") {
likpar <- sapply(Xlist.n,function(x) { #matrix with loglik and npar for each subgroup
objectg <- RM(x,se=se)
likg <- objectg$loglik
nparg <- length(objectg$etapar)
# betalab <- colnames(objectg$X)
list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta,outobj=objectg) # rh outobj added
###list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta) # rh outobj added
})
}
if (object$model=="PCM") {
likpar <- sapply(Xlist.n,function(x) { #matrix with loglik and npar for each subgroup
objectg <- PCM(x,se=se)
likg <- objectg$loglik
nparg <- length(objectg$etapar)
list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta,outobj=objectg) # rh outobj added
###list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta) # rh outobj added
})
}
if (object$model=="RSM") {
likpar <- sapply(Xlist.n,function(x) { #matrix with loglik and npar for each subgroup
objectg <- RSM(x,se=se)
likg <- objectg$loglik
nparg <- length(objectg$etapar)
list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta,outobj=objectg) # rh outobj added
###list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta) # rh outobj added
})
}
## extract fitted splitgroup models # rh 02-05-2010
if(ifelse(length(splitcr) == 1, splitcr != "all.r", TRUE)){ ### begin MjM 2012-03-18
fitobj <- likpar[6, 1:length(unique(rvind))]
} else {
fitobj <- likpar[6, 1:length(unique(rvind[excl_0_k]))]
} ### end MjM 2012-03-18
likpar <- likpar[-6,]
if((length(del.pos) > 0) | ifelse(length(splitcr) == 1, splitcr == "all.r", FALSE)) { #re-estimate full model ### MjM 2012-03-18
pos <- length(Xlist.n) #position of the full model
loglik.all <- likpar[1,pos][[1]] #loglik full model
# etapar.all <- rep(0,likpar[2,pos]) #etapar full model (filled with 0 for df computation)
etapar.all <- rep(0, unlist(likpar[2,pos])) #etapar full model (filled with 0 for df computation)
likpar <- likpar[,-pos]
Xlist.n <- Xlist.n[-pos]
} else {
loglik.all <- object$loglik
etapar.all <- object$etapar
}
loglikg <- sum(unlist(likpar[1,])) #sum of likelihood value for subgroups
LR <- 2*(abs(loglikg-loglik.all)) #LR value
df = sum(unlist(likpar[2,]))-(length(etapar.all)) #final degrees of freedom
pvalue <- 1 - pchisq(LR, df) #pvalue
betalist <- likpar[3,] #organizing betalist
result <- list(X=X.original, X.list=Xlist.n, model=object$model,LR=LR,
df=df, pvalue=pvalue, likgroup=unlist(likpar[1,],use.names=FALSE),
betalist=betalist, etalist=likpar[4,],selist=likpar[5,], spl.gr=spl.gr, call=call, fitobj=fitobj) ## rh fitobj added
class(result) <- "LR"
return(result)
}
|