1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
# uses
# component.dist
# reachability
# geodist
# symmetrize
# components.c
# geodist.c
#
# from R package sna
# function to check for ill-conditioned data in the RM
# requires package sna
##checkdata<-function(x)
##{
## k<-ncol(x)
## adj<-matrix(0,nc=k,nr=k)
## for (i in 1:k) for(j in 1:k) {
## adj[i,j]<- 1*any(x[,i]>x[,j],na.rm=TRUE)
## }
##
## #library(sna)
## #adj <- diag.remove(adj)
## # %print(adj) # adjacency marix
## cd <- component.dist(adj, connected = "strong")
## cm <- cd$membership
## cmp <- max(cm)
##
##
## if(cmp>1) {
## cat("Data:",deparse(substitute(x)),"are ill-conditioned\n")
## cat("Number of strong components",cmp,"\n")
## cat("Component membership of items: ",cm,"\n")
## } else
## cat("Data:",deparse(substitute(x)),"are well-conditioned\n")
##}
##
######################################################
component.dist<-
function (dat, connected = c("strong", "weak", "unilateral",
"recursive"))
{
# dat <- as.sociomatrix.sna(dat)
# if (is.list(dat))
# return(lapply(dat, component.dist, connected = connected))
# else if (length(dim(dat)) > 2)
# return(apply(dat, 1, component.dist, connected = connected))
n <- dim(dat)[2]
if (any(dat != t(dat)))
dat <- switch(match.arg(connected), weak = symmetrize(dat,
rule = "weak"), unilateral = reachability(dat), strong = symmetrize(reachability(dat),
rule = "strong"), recursive = symmetrize(dat, rule = "strong"))
# if (match.arg(connected) == "unilateral")
# if (any(dat != t(dat)))
# warning("Nonunique unilateral component partition detected in component.dist. Problem vertices will be arbitrarily assigned to one of their components.\n")
membership <- rep(0, n)
membership <- .C("component_dist_R", as.double(dat), as.double(n),
membership = as.double(membership), PACKAGE="eRm")$membership
o <- list()
o$membership <- membership
o$csize <- vector()
for (i in 1:max(membership)) o$csize[i] <- length(membership[membership ==
i])
o$cdist <- vector()
for (i in 1:n) o$cdist[i] <- length(o$csize[o$csize == i])
o
}
#reachability - Find the reachability matrix of a graph.
reachability<-function(dat,geodist.precomp=NULL){
#Pre-process the raw input
# dat<-as.sociomatrix.sna(dat)
# if(is.list(dat))
# return(lapply(dat,reachability,geodist.precomp=geodist.precomp))
# else if(length(dim(dat))>2)
# return(apply(dat,1,reachability,geodist.precomp=geodist.precomp))
# return(unlist(apply(dat,1,function(x,geodist.precomp){list(reachability(x, geodist.precomp=geodist.precomp))},geodist.precomp=geodist.precomp),recursive=FALSE))
#End pre-processing
#Get the counts matrix
if(is.null(geodist.precomp))
cnt<-geodist(dat)$counts
else
cnt<-geodist.precomp$counts
#Dichotomize and return
apply(cnt>0,c(1,2),as.numeric)
}
#geodist - Find the numbers and lengths of geodesics among nodes in a graph
#using a BFS, a la Brandes (2000). (Thanks, Ulrik!)
geodist<-function(dat,inf.replace=Inf){
#Pre-process the raw input
# dat<-as.sociomatrix.sna(dat)
# if(is.list(dat))
# return(lapply(dat,geodist,inf.replace=inf.replace))
# else if(length(dim(dat))>2)
# return(apply(dat,1,geodist,inf.replace=inf.replace))
#End pre-processing
n<-dim(dat)[2]
#Initialize the matrices
sigma<-matrix(0,nrow=n,ncol=n)
gd<-matrix(Inf,nrow=n,ncol=n)
#Perform the calculation
geo<-.C("geodist_R",as.double(dat),as.double(n),gd=as.double(gd), sigma=as.double(sigma),NAOK=TRUE,PACKAGE="eRm")
#Return the results
o<-list()
o$counts<-matrix(geo$sigma,n,n)
o$gdist<-matrix(geo$gd,n,n)
o$gdist[o$gdist==Inf]<-inf.replace #Patch Infs, if desired
o
}
#symmetrize - Convert a graph or graph stack to a symmetric form. Current rules
#for symmetrizing include "upper" and "lower" diagonals, "weak" connectedness
#rule, and a "strong" connectedness rule.
symmetrize<-function(mats,rule="weak"){
#Pre-process the raw input
# mats<-as.sociomatrix.sna(mats)
# if(is.list(mats))
# return(lapply(mats,symmetrize,rule=rule))
#End pre-processing
#Build the input data structures
# if(length(dim(mats))>2){
# m<-dim(mats)[1]
# n<-dim(mats)[2]
# o<-dim(mats)[3]
# d<-mats
# }else{
m<-1
n<-dim(mats)[1]
o<-dim(mats)[2]
d<-array(dim=c(1,n,o))
d[1,,]<-mats
# }
#Apply the symmetry rule
for(i in 1:m){
if(rule=="upper"){
# temp<-d[i,,]
# for(j in 1:n)
# temp[j:n,j]<-temp[j,j:n]
# d[i,,]<-temp
# }else if(rule=="lower"){
# temp<-d[i,,]
# for(j in 1:n)
# temp[j,j:n]<-temp[j:n,j]
# d[i,,]<-temp
# }else if(rule=="weak"){
# d[i,,]<-matrix(as.numeric(d[i,,]|t(d[i,,])),nrow=n,ncol=o)
}else if(rule=="strong"){
d[i,,]<-matrix(as.numeric(d[i,,]&t(d[i,,])),nrow=n,ncol=o)
}
}
#Return the symmetrized matrix
if(m==1)
out<-d[1,,]
else
out<-d
out
}
|