1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
`person.parameter.eRm` <- function(object){
# estimation of the person parameters with jml
# object of class eRm
# se... whether standard errors should be computed
se <- TRUE
interpolation <- TRUE
X <- object$X
#collapse X
#X.full <- object$X
max.it <- apply(X, 2L, max, na.rm = TRUE) #maximum item raw score without NA
rp <- rowSums(X, na.rm = TRUE) #person raw scores
maxrp <- apply(X, 1L, function(x.i){ sum(max.it[!is.na(x.i)]) }) #maximum item raw score for person i
TFrow <- ((rp==maxrp) | (rp==0))
pers.exe <- (1L:nrow(X))[TFrow] #persons excluded from estimation due to 0/full
pers.exe.names <- rownames(X)[pers.exe]
pers.in <- (1L:nrow(X))[-pers.exe] #persons in estimation
if(length(pers.exe) > 0L){ #data matrix persons (full/0) excluded)
X.ex <- object$X[-pers.exe,]
} else {
X.ex <- object$X
}
if(any(is.na(X))){
dichX <- ifelse(is.na(X), 1, 0)
strdata <- apply(dichX, 1L, function(x){ paste(x, collapse="") })
gmemb.X <- as.vector(data.matrix(data.frame(strdata)))
} else {
gmemb.X <- rep(1L, nrow(X))
}
if(length(pers.exe) > 0L) X <- X[-pers.exe,]
X.dummy <- X
if(any(is.na(X))){
dichX <- ifelse(is.na(X), 1, 0)
strdata <- apply(dichX, 1L, function(x){ paste(x, collapse="") })
gmemb <- as.vector(data.matrix(data.frame(strdata)))
gmemb1 <- gmemb
} else {
gmemb <- rep(1L, nrow(X))
gmemb1 <- gmemb
}
#mt_vek <- apply(X, 2L, max, na.rm = TRUE) #number of categories - 1 for each item
mt_vek <- apply(object$X, 2L, max, na.rm = TRUE) ## FIX: to be tested
mt_ind <- rep(1L:length(mt_vek), mt_vek) #index i for items
indvec <- NULL #establish matrix with unique raw scores
for(i in unique(gmemb)){
gmemb.ind <- which(gmemb == i)
collapse.vec <- which(!duplicated(rowSums(rbind(X[gmemb==i,]), na.rm = TRUE)))
indvec <- c(indvec, gmemb.ind[collapse.vec])
}
#for (i in unique(gmemb)) indvec <- c(indvec,!duplicated(rowSums(rbind(X[gmemb==i,]),na.rm = TRUE)))
indvec <- sort(indvec)
X <- X[indvec,] #collapsing X
beta.all <- object$betapar
if(!is.null(object$ngroups)){
if(object$ngroups > 1L) stop("Estimation of person parameters for models with group contrasts not possible!")
}
if(is.null(object$mpoints)){
mpoints <- 1L
} else {
mpoints <- object$mpoints
}
r.pall <- rowSums(X, na.rm = TRUE) #person raw scores
X01 <- object$X01
if(length(pers.exe) > 0L) X01 <- X01[-pers.exe,] #if persons excluded due to 0/full response
X01 <- X01[indvec,] #collapsed version
gmemb <- gmemb[indvec] #collapsed version
rownames(X01) <- rownames(X)
rowvec <- 1L:nrow(X01)
fitlist <- tapply(rowvec, gmemb, function(rind){ #list with nlm outputs
if(length(rind) > 1L){
ivec <- !is.na(X[rind[1],]) #non-NA elements
r.i <- colSums(X[rind, ivec], na.rm = TRUE) #item raw scores
} else { #if only one person belongs to raw score group
ivec <- !is.na(X[rind[1],])
r.i <- X[rind, ivec]
# r.i <- X[rind,]
# r.i[is.na(r.i)] <- 0
}
#r.i <- colSums(object$X[rind,],na.rm=TRUE) #item raw scores
r.p <- r.pall[rind] #person raw scores for current NA group
X01g <- rbind(X01[rind,])
beta <- beta.all[!is.na(X01g[1L,])]
X01beta <- rbind(X01g, beta.all) #matrix with unique 0/1 response patterns and beta vector in the last row
theta <- rep(0L, length(r.p))
#==================== ML routines ===================================
jml.rasch <- function(theta){ #fast ML for RM only
ksi <- exp(theta)
denom <- 1/exp(-beta) #-beta instead of beta since beta are easiness parameter
lnL <- sum(r.p*theta) - sum(r.i*(-beta)) - sum(log(1 + outer(ksi,denom)))
return(-lnL)
}
jml <- function(theta){ #ML for all other models
t1t2.list <- tapply(1L:ncol(X01beta), mt_ind, function(xin){
#xb <- (t(X01beta)[xin,])
xb <- rbind(t(X01beta)[xin,]) #0/1 responses and beta parameters for one item
beta.i <- c(0.0, xb[,ncol(xb)]) #item parameter with 0
#person responses (row-wise) on each category for current item
if((nrow(xb) > 1L) && (length(xin == 1L))){
x01.i <- as.matrix(xb[,1L:(ncol(xb) - 1L)])
} else {
x01.i <- rbind(xb[,1L:(ncol(xb) - 1L)]) #0/1 matrix for item i without beta
}
cat0 <- rep(0L, ncol(x01.i))
cat0[colSums(x01.i) == 0L] <- 1 #those with 0 on the 1-kth category get a 1
x01.i0 <- rbind(cat0, x01.i) #appending response vector for 0th category
ind.h <- 0L:(length(beta.i)-1L)
theta.h <- ind.h %*% t(theta) #n. categories times theta
term1 <- (theta.h + beta.i) * x01.i0 #category-person matrix
t1.i <- sum(colSums(term1)) #sum over categories and persons
#print(t1.i)
term2 <- exp(theta.h+beta.i)
t2.i <- sum(log(colSums(term2))) #sum over categories and persons
#print(t2.i)
return(c(t1.i,t2.i))
})
termlist <- matrix(unlist(t1t2.list), ncol = 2L, byrow = TRUE)
termlist <- termlist[!is.na(rowSums(termlist)),]
st1st2 <- colSums(termlist, na.rm = TRUE) #sum term1, term2
lnL <- st1st2[1] - st1st2[2]
return(-lnL)
}
#==================== end ML routines ================================
#==================== call optimizer =================================
if (object$model == "RM") {
fit <- nlm(jml.rasch, theta, hessian = se, iterlim = 1000L)
} else {
fit <- nlm(jml, theta, hessian = se, iterlim = 1000)
}
#fit2 <- optim(theta, jml.rasch, method="BFGS", hessian=TRUE)
#=================== end call optimizer ==============================
loglik <- -fit$minimum
niter <- fit$iterations
thetapar <- fit$estimate
if(se){
se <- sqrt(diag(solve(fit$hessian)))
} else {
se <- NA
fit$hessian <- NA
}
return(list("loglik" = loglik,
"niter" = niter,
"thetapar" = thetapar,
"se" = se,
"hessian" = fit$hessian))
})
loglik <- niter <- npar <- numeric(length(fitlist))
thetapar <- se.theta <- hessian <- vector(mode = "list", length = length(fitlist))
for(i in seq_along(fitlist)){
loglik[i] <- fitlist[[i]]$loglik
niter[i] <- fitlist[[i]]$niter
npar[i] <- length(fitlist[[i]]$thetapar)
thetapar[[i]] <- fitlist[[i]]$thetapar
se.theta[[i]] <- fitlist[[i]]$se
hessian[[i]] <- fitlist[[i]]$hessian
}
if(interpolation){ #cubic spline interpolation for 0 and full raw scores
x <- rowSums(X, na.rm = TRUE)
xlist <- split(x, gmemb)
splineMessage <- FALSE # to display the spline-failure message only once
max.rs.NAgroups <- lapply(sort(unique(gmemb.X)), function(i){ ## MM 2012-02-01
sum(max.it[!is.na(object$X[which(gmemb.X == i)[1],])]) # get the max. raw score per NA-group
})
NAgroups.min <- tapply(rowSums(object$X, na.rm=T), gmemb.X, min, na.rm = TRUE)
NAgroups.max <- tapply(rowSums(object$X, na.rm=T), gmemb.X, max, na.rm = TRUE)
NAgroup_exclude <- numeric()
for(i in seq_along(unique(gmemb.X))){ # delete groups with 0/full patterns from max.rs.NAgroups, NAgroups.min, NAgroups.max
if(all(rowSums(object$X, na.rm=TRUE)[gmemb.X == i] %in% c(0, max.rs.NAgroups[[i]]))) NAgroup_exclude <- c(NAgroup_exclude, i)
}
if(length(NAgroup_exclude) > 0L){
splineMessage <- TRUE # so that the message is only printed once
max.rs.NAgroups <- max.rs.NAgroups[-NAgroup_exclude]
NAgroups.min <- NAgroups.min[-NAgroup_exclude]
NAgroups.max <- NAgroups.max[-NAgroup_exclude]
gmemb_reduced <- unique(gmemb.X[-which(gmemb.X %in% NAgroup_exclude)])
}
pred.list <- Map(function(xx, yy, rs, NAmin, NAmax){ # Map(...) is mapply(..., SIMPLFY = FALSE)
y <- tapply(yy, xx, function(xy){ xy[1] })
x <- unique(sort(xx))
from <- ifelse(NAmin == 0, 0, min(x))
to <- ifelse(NAmax == rs, rs, max(x))
if((length(x) > 3) || (length(y) > 3)){ #otherwise splinereg is not admissible
fm1 <- interpSpline(x,y)
if((from == 0) | (to == rs)){
pred.val <- unclass(predict(fm1, unique(c(from, x, to))))
} else {
list(x=unname(x),y=unname(y)) #MM2012-02-01
}
} else {
splineMessage <- TRUE # so that the message is only printed once
rval <- list(x=unname(x),y=unname(y)) #MM2012-02-01
if(from == 0){ rval$x <- c(0, rval$x)
rval$y <- c(NA, rval$y) }
if(to == rs){ rval$x <- c(rval$x, rs)
rval$y <- c(rval$y, NA) }
rval
}
}, xlist, thetapar, max.rs.NAgroups, NAgroups.min, NAgroups.max)
X.n <- object$X
# if (any(sapply(pred.list,is.null))) pred.list <- NULL #no spline interpolation applicable #MM2012-02-01
if(splineMessage) message("Spline interpolation in some subgroups not performed!\n Less than 4 different person parameters estimable!\n Perhaps NAs in subgroup(s).")
}
names(thetapar) <- names(se.theta) <- paste("NAgroup", 1L:length(thetapar), sep="")
#---------expand theta and se.theta, labeling -------------------
for(i in unique(gmemb)){
o.r <- rowSums(rbind(X.dummy[gmemb1==i,]), na.rm = TRUE) #orginal raw scores
names(o.r) <- rownames(X.dummy)[gmemb1 == i]
c.r <- rowSums(rbind(X[gmemb==i,]), na.rm = TRUE) #collapsed raw scores
match.ind <- match(o.r, c.r)
thetapar[[i]] <- thetapar[[i]][match.ind] #de-collapse theta's
se.theta[[i]] <- se.theta[[i]][match.ind] #de-collapse se's
names(thetapar[[i]]) <- names(se.theta[[i]]) <- names(o.r)
}
#--------------- end expand, labeling ---------------------------
#---------------------- theta.table new ----------------------
if(length(NAgroup_exclude) > 0L){
selector <- gmemb.X %in% gmemb_reduced
} else {
selector <- rep(TRUE, length(gmemb.X))
}
gmemb.X_final <- gmemb.X[selector]
while(any(diff(sort(unique(gmemb.X_final))) > 1L) | (min(gmemb.X_final) > 1L)){
if(!any(gmemb.X_final == 1L)){ gmemb.X_final <- gmemb.X_final - 1L; next }
for(i in 1:max(gmemb.X_final)){
if(sum(gmemb.X_final == i) == 0) gmemb.X_final[gmemb.X_final == (i+1L)] <- gmemb.X_final[gmemb.X_final == (i+1L)] - 1L
}
}
theta.table <- data.frame("Person Parameter" = rep(NA, nrow(object$X)),
"NAgroup" = NA,
"Interpolated" = FALSE,
row.names=rownames(object$X),
check.names = FALSE)
theta.table[selector, "Person Parameter"] <- mapply(function(rs, NAgroup){
pred.list[[NAgroup]]$y[which(pred.list[[NAgroup]]$x == rs)]
}, rowSums(object$X, na.rm=T)[selector], gmemb.X_final)
theta.table[selector, "NAgroup"] <- gmemb.X_final
if(length(pers.exe) > 0) theta.table[pers.exe,"Interpolated"] <- TRUE
result <- list(X = X.n, X01 = object$X01, X.ex = X.ex, W = object$W, model = object$model,
loglik = loglik, loglik.cml = object$loglik, npar = npar, iter = niter, betapar = object$betapar,
thetapar = thetapar, se.theta = se.theta, theta.table = theta.table,
pred.list = pred.list, hessian = hessian, mpoints = mpoints,
pers.ex = pers.exe, gmemb = gmemb1)
class(result) <- "ppar"
return(result)
}
|