1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
\encoding{UTF-8}
\name{Waldtest}
\alias{Waldtest}
\alias{Waldtest.Rm}
\alias{print.wald}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Item-Specific Wald Test}
\description{Performs a Wald test on item-level by splitting subjects into subgroups.
}
\usage{
\method{Waldtest}{Rm}(object, splitcr = "median")
\method{print}{wald}(x,...)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{object}{Object of class \code{RM}.}
\item{splitcr}{Split criterion for subject raw score splitting. \code{median}
uses the median as split criterion, \code{mean} performs a mean-split.
Optionally \code{splitcr} can also be a dichotomous vector which assigns each person to a
certain subgroup (e.g., following an external criterion). This vector can be numeric, character or a factor. }
\item{x}{Object of class \code{wald}.}
\item{...}{Further arguments passed to or from other methods. They are ignored in this function.}
}
\details{Items are eliminated if they not have the same number of categories in each subgroup.
To avoid this problem, for RSM and PCM it is considered to use a random or another user-defined split.
If the data set contains missing values and \code{mean} or \code{median} is specified as splitcriterion,
means or medians are calculated for each missing value subgroup and consequently used for raw score splitting.}
\value{
Returns an object of class \code{wald} containing:
\item{coef.table}{Data frame with test statistics, z- and p-values.}
\item{betapar1}{Beta parameters for first subgroup}
\item{se.beta1}{Standard errors for first subgroup}
\item{betapar2}{Beta parameters for second subgroup}
\item{se.beta2}{Standard errors for second subgroup}
\item{se.beta2}{Standard errors for second subgroup}
\item{spl.gr}{Names and levels for \code{splitcr}.}
\item{call}{The matched call.}
}
\references{
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations,
Recent Developements, and Applications. Springer.
Fischer, G. H., and Scheiblechner, H. (1970). Algorithmen und Programme fuer das
probabilistische Testmodell von Rasch [Algorithms and programs for Rasch's
probabilistic test model]. Psychologische Beitraege, 12, 23-51.
}
\author{Patrick Mair, Reinhold Hatzinger}
%\note{}
\seealso{\code{\link{LRtest}}, \code{\link{MLoef}}}
\examples{
#Wald test for Rasch model with user-defined subject split
res <- RM(raschdat2)
splitvec <- sample(1:2,25,replace=TRUE)
Waldtest(res, splitcr = splitvec)
}
\keyword{models}
|