File: person.parameter.Rd

package info (click to toggle)
r-cran-erm 1.0-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,952 kB
  • sloc: f90: 401; ansic: 103; makefile: 8
file content (101 lines) | stat: -rwxr-xr-x 3,993 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
\encoding{UTF-8}
\name{person.parameter}
\alias{person.parameter}
\alias{person.parameter.eRm}
\alias{summary.ppar}
\alias{print.ppar}
\alias{plot.ppar}
\alias{coef.ppar}
\alias{logLik.ppar}
\alias{print.logLik.ppar}
\alias{confint.ppar}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Estimation of Person Parameters}
\description{Maximum likelihood estimation of the person parameters with spline
interpolation for non-observed and 0/full responses. Extraction of information criteria such
as AIC, BIC, and cAIC based on unconditional log-likelihood.}
\usage{
\method{person.parameter}{eRm}(object)
\method{summary}{ppar}(object, ...)
\method{print}{ppar}(x, ...)
\method{plot}{ppar}(x, xlab = "Person Raw Scores",
   ylab = "Person Parameters (Theta)", main = NULL, ...)
\method{coef}{ppar}(object, extrapolated = TRUE, ...)
\method{logLik}{ppar}(object, ...)
\method{confint}{ppar}(object, parm, level = 0.95, ...)
}

\arguments{
  \item{object}{Object of class \code{'eRm'} in \code{person.parameter} and object of class \code{ppar} in \code{IC}.}

Arguments for \code{print} and \code{plot} methods:
  \item{x}{Object of class \code{ppar}.}
  \item{xlab}{Label of the x-axis.}
  \item{ylab}{Label of the y-axis.}
  \item{main}{Title of the plot.}
  \item{...}{Further arguments to be passed to or from other methods. They are ignored in this function.}

Arguments for the \code{coef} method:
  \item{extrapolated}{either returns extrapolated values for raw scores 0 and k or sets them \code{NA}}

Arguments for \code{confint}:
  \item{parm}{Parameter specification (ignored).}
  \item{level}{Alpha-level.}
}
\details{If the data set contains missing values, person parameters are estimated
for each missing value subgroup.
}
\value{
The function \code{person.parameter} returns an object of class \code{ppar} containing:
  \item{loglik}{Log-likelihood of the collapsed data (for faster estimation persons with the same raw score are collapsed).}
  \item{npar}{Number of parameters.}
  \item{niter}{Number of iterations.}
  \item{thetapar}{Person parameter estimates.}
  \item{se.theta}{Standard errors of the person parameters.}
  \item{hessian}{Hessian matrix.}
  \item{theta.table}{Matrix with person parameters (ordered according to original data)
         including NA pattern group.}
  \item{pers.ex}{Indices with persons excluded due to 0/full raw score}
  \item{X.ex}{Data matrix with persons excluded}
  \item{gmemb}{NA group membership vector (0/full persons excluded)}


The function \code{coef} returns a vector of the person parameter estimates for each person (i.e., the first column
  of \code{theta.table}).

The function \code{logLik} returns an object of class \code{loglik.ppar} containing:
  \item{loglik}{Log-likelihood of the collapsed data (see above).}
  \item{df}{Degrees of freedom.}

}


\references{
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations,
Recent Developements, and Applications. Springer.

Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The \pkg{eRm} package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20.

Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the \pkg{eRm} package in R. Psychology Science, 49, 26-43.
}
\author{Patrick Mair, Reinhold Hatzinger}
%\note{}
\seealso{
    \code{\link{itemfit.ppar}},\code{\link{personfit.ppar}}
}
\examples{
#Person parameter estimation of a rating scale model
res <- RSM(rsmdat)
pres <- person.parameter(res)
pres
summary(pres)
plot(pres)

#Person parameter estimation for a Rasch model with missing values
res <- RM(raschdat2, se = FALSE) #Rasch model without standard errors
pres <- person.parameter(res)
pres                             #person parameters
summary(pres)
logLik(pres)                     #log-likelihood of person parameter estimation
}
\keyword{models}