1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
require(etm)
## Print with a bit less precision to avoid lots of notes in the comparison
old <- options(digits = 4)
### Simple test
time <- id <- 1:10
from <- rep(0, 10)
to <- rep(1, 10)
data1 <- data.frame(id, from, to, time)
tra1 <- matrix(FALSE, 2, 2)
tra1[1, 2] <- TRUE
etm1 <- etm(data1, c("0", "1"), tra1, NULL, 0)
all.equal(as.vector(trprob(etm1, "0 0")), cumprod((10:1 - 1) / (10:1)))
etm1$cov["0 0", "0 0", ]
all.equal(etm1$cov["0 0", "0 0",], trcov(etm1, "0 0"))
### A simple test from AHR's author, where the first time is censored
if (!require(survival)) {
stop("This test requires the survival package")
}
data <- data.frame(id=1:10, time=1:10, from=0, to=1, status=TRUE)
tra <- matrix(FALSE, nrow=2, ncol=2)
tra[1, 2] <- TRUE
data$to[1] <- "cens"
data$status[1] <- FALSE
fit.km <- survfit(Surv(time, status) ~ 1, data=data)
fit.etm <- etm(data, c("0","1"), tra, "cens", s=0, t="last", covariance=FALSE)
all.equal(fit.km$surv[data$status], fit.etm$est[1,1,], check.attributes = FALSE)
data$to[2] <- "cens"
data$status[2] <- FALSE
fit.km <- survfit(Surv(time, status) ~ 1, data=data)
fit.etm <- etm(data, c("0","1"), tra, "cens", s=0, t="last", covariance=FALSE)
all.equal(fit.km$surv[data$status], fit.etm$est[1,1,], check.attributes = FALSE)
### a bit more complicated
time <- id <- 1:10
from <- rep(0, 10)
to <- rep(c(1, 2), 5)
data2 <- data.frame(id, from, to, time)
tra2 <- matrix(FALSE, 3, 3)
tra2[1, 2:3] <- TRUE
etm2 <- etm(data2, c("0", "1", "2"), tra2, NULL, 0)
aa <- table(time, to)
cif1 <- cumsum(aa[, 1] / 10)
cif2 <- cumsum(aa[, 2] / 10)
surv <- cumprod((10:1 - 1) / (10:1))
all.equal(trprob(etm2, "0 1"), cif1)
all.equal(trprob(etm2, "0 2"), cif2)
all.equal(as.vector(trprob(etm2, "0 0")), surv)
## a test on id
data2$id <- letters[1:10]
etm3 <- etm(data2, c("0", "1", "2"), tra2, NULL, 0)
all.equal(trprob(etm2, "0 1"), trprob(etm3, "0 1"))
all.equal(trprob(etm2, "0 2"), trprob(etm3, "0 2"))
all.equal(trprob(etm2, "0 0"), trprob(etm3, "0 0"))
### Test on sir.cont
data(sir.cont)
## Modification for patients entering and leaving a state
## at the same date
## Change on ventilation status is considered
## to happen before end of hospital stay
sir.cont <- sir.cont[order(sir.cont$id, sir.cont$time), ]
for (i in 2:nrow(sir.cont)) {
if (sir.cont$id[i]==sir.cont$id[i-1]) {
if (sir.cont$time[i]==sir.cont$time[i-1]) {
sir.cont$time[i-1] <- sir.cont$time[i-1] - 0.5
}
}
}
### Computation of the transition probabilities
## Possible transitions.
tra <- matrix(ncol=3,nrow=3,FALSE)
tra[1, 2:3] <- TRUE
tra[2, c(1, 3)] <- TRUE
## etm
prob.sir <- etm(sir.cont, c("0", "1", "2"), tra, "cens", 1)
prob.sir
summ.sir <- summary(prob.sir)
all.equal(summ.sir[['0 1']]$P, as.vector(trprob(prob.sir, "0 1")))
subset(summ.sir[[3]],time<183) # issue with precision on different architectures
## gonna play a bit with the state names
dd <- sir.cont
dd$from <- ifelse(dd$from == 0, "initial state", "ventilation")
dd$to <- as.character(dd$to)
for (i in seq_len(nrow(dd))) {
dd$to[i] <- switch(dd$to[i],
"0" = "initial state",
"1" = "ventilation",
"2" = "end of story",
"cens" = "cens"
)
}
test <- etm(dd, c("initial state", "ventilation", "end of story"), tra, "cens", 1)
all.equal(test$est["initial state", "initial state", ],
prob.sir$est["0", "0", ])
all.equal(trprob(test, "initial state initial state"), trprob(prob.sir, "0 0"))
all.equal(trprob(test, "initial state ventilation"), trprob(prob.sir, "0 1"))
all.equal(trprob(test, "initial state end of story"), trprob(prob.sir, "0 2"))
all.equal(trcov(test, "initial state end of story"), trcov(prob.sir, "0 2"))
aa <- summary(test)
all.equal(summ.sir[[6]], aa[[6]])
all.equal(summ.sir[[4]], aa[[4]])
### Test on abortion data
data(abortion)
from <- rep(0, nrow(abortion))
to <- abortion$cause
entry <- abortion$entry
exit <- abortion$exit
id <- 1:nrow(abortion)
data <- data.frame(id, from, to, entry, exit, group = abortion$group)
## Computation of the CIFs
tra <- matrix(FALSE, 4, 4)
tra[1, 2:4] <- TRUE
cif.control <- etm(data[data$group == 0, ], c("0", "1", "2", "3"),
tra, NULL, 0)
cif.exposed <- etm(data[data$group == 1, ], c("0", "1", "2", "3"),
tra, NULL, 0)
all.equal(trprob(cif.control, "0 1"), cif.control$est["0", "1", ])
all.equal(trcov(cif.control, c("0 1", "0 2")), cif.control$cov["0 1", "0 2", ])
trprob(cif.control, "0 1")
trprob(cif.control, "0 2")
trprob(cif.control, "0 0")
trcov(cif.control, "0 1")
trcov(cif.control, "0 2")
trcov(cif.control, "0 0")
aa <- summary(cif.control)
aa$"0 1"
all.equal(aa$"0 1"$P, as.vector(trprob(cif.control, "0 1")))
### test on los data
data(los.data) # in package changeLOS
## putting los.data in the long format (see changeLOS)
my.observ <- prepare.los.data(x=los.data)
tra <- matrix(FALSE, 4, 4)
tra[1, 2:4] <- TRUE
tra[2, 3:4] <- TRUE
tr.prob <- etm(my.observ, c("0","1","2","3"), tra, NULL, 0)
tr.prob
summary(tr.prob)
cLOS <- etm::clos(tr.prob, aw = TRUE)
cLOS
### Tests on pseudo values
t_pseudo <- closPseudo(my.observ, c("0","1","2","3"), tra, NULL,
formula = ~ 1, aw = TRUE)
cLOS$e.phi == t_pseudo$theta[, "e.phi"]
cLOS$e.phi.weights.1 == t_pseudo$theta[, "e.phi.weights.1"]
cLOS$e.phi.weights.other == t_pseudo$theta[, "e.phi.weights.other"]
mean(t_pseudo$pseudoData$ps.e.phi)
### tests on etmprep
### creation of fake data in the wild format, following an illness-death model
## transition times
tdisease <- c(3, 4, 3, 6, 8, 9)
tdeath <- c(6, 9, 8, 6, 8, 9)
## transition status
stat.disease <- c(1, 1, 1, 0, 0, 0)
stat.death <- c(1, 1, 1, 1, 1, 0)
## a covariate that we want to keep in the new data
set.seed(1313)
cova <- rbinom(6, 1, 0.5)
dat <- data.frame(tdisease, tdeath,
stat.disease, stat.death,
cova)
## Possible transitions
tra <- matrix(FALSE, 3, 3)
tra[1, 2:3] <- TRUE
tra[2, 3] <- TRUE
## data preparation
newdat <- etmprep(c(NA, "tdisease", "tdeath"),
c(NA, "stat.disease", "stat.death"),
data = dat, tra = tra,
cens.name = "cens", keep = "cova")
newdat
ref <- data.frame(id = c(1, 1, 2, 2, 3, 3, 4, 5, 6),
entry = c(0, 3, 0, 4, 0, 3, 0, 0, 0),
exit = c(3, 6, 4, 9, 3, 8, 6, 8, 9),
from = c(0, 1, 0, 1, 0, 1, 0, 0, 0),
to = c(rep(c(1, 2), 3), 2, 2, "cens"),
cova = c(1, 1, 0, 0, 1, 1, 0, 1, 1))
ref$from <- factor(as.character(ref$from), levels = c("0", "1", "2", "cens"))
ref$to <- factor(as.character(ref$to), levels = c("0", "1", "2", "cens"))
all.equal(ref, newdat)
######################################
### Test the stratified calls
######################################
if (require("kmi", quietly = TRUE)) {
library(etm)
data(icu.pneu)
my.icu.pneu <- icu.pneu
my.icu.pneu <- my.icu.pneu[order(my.icu.pneu$id, my.icu.pneu$start), ]
masque <- diff(my.icu.pneu$id)
my.icu.pneu$from <- 0
my.icu.pneu$from[c(1, masque) == 0] <- 1
my.icu.pneu$to2 <- my.icu.pneu$event
my.icu.pneu$to2[my.icu.pneu$status == 0] <- "cens"
my.icu.pneu$to2[c(masque, 1) == 0] <- 1
my.icu.pneu$to <- ifelse(my.icu.pneu$to2 %in% c(2, 3), 2,
my.icu.pneu$to2)
my.icu.pneu <- my.icu.pneu[, c("id", "start", "stop", "from", "to",
"to2", "age", "sex")]
names(my.icu.pneu)[c(2, 3)] <- c("entry", "exit")
bouh_strat <- etm(my.icu.pneu, c("0", "1", "2"), tra_ill(), "cens", 0, strata = "sex")
bouh_female <- etm(my.icu.pneu[my.icu.pneu$sex == "F", ],
c("0", "1", "2"), tra_ill(), "cens", 0)
all(bouh_strat[[1]]$est == bouh_female$est)
## Test the summary
the_summary <- summary(bouh_strat)
the_summary
## Test trprob
all(trprob(bouh_strat, "0 1")[[1]] == trprob(bouh_female, "0 1"))
all(trprob(bouh_strat, "0 1", c(0, 5, 10, 15))[[1]] == trprob(bouh_female, "0 1", c(0, 5, 10, 15)))
## Test trcov
all(trcov(bouh_strat, "0 1")[[1]] == trcov(bouh_female, "0 1"))
all(trcov(bouh_strat, c("0 1", "0 2"))[[1]] == trcov(bouh_female, c("0 1", "0 2")))
all(trcov(bouh_strat, "0 1", c(0, 5, 10, 15))[[1]] == trcov(bouh_female, "0 1", c(0, 5, 10, 15)))
} else {
print("These tests require the kmi package")
}
options(old)
|