1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
# Copyright (c) 2018-2022 ISciences, LLC.
# All rights reserved.
#
# This software is licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License. You may
# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
setGeneric("exact_extract", function(x, y, ...)
standardGeneric("exact_extract"))
#' Extract or summarize values from rasters
#'
#' Extracts the values of cells in a raster (`RasterLayer`, `RasterStack`
#' `RasterBrick`, or `SpatRaster`) that are covered by polygons in a
#' simple feature collection (`sf` or `sfc`) or `SpatialPolygonsDataFrame`.
#' Returns either a summary of the extracted values or the extracted values
#' themselves.
#'
#' @details
#' `exact_extract` extracts the values of cells in a raster that are covered
#' by polygonal features in a simple feature collection (`sf` or `sfc`) or
#' `SpatialPolygonDataFrame`, as well as the fraction or area of each cell that
#' is covered by the feature. Pixels covered by all parts of the polygon are
#' considered. If an (invalid) multipart polygon covers the same pixels more
#' than once, the pixel may have a coverage fraction greater than one.
#'
#' The function can either return pixel values directly to the caller, or can
#' return the result of a predefined summary operation or user-defined R
#' function applied to the values. These three approaches are described in the
#' subsections below.
#'
#' ## Returning extracted values directly
#'
#' If `fun` is not specified, `exact_extract` will return a list with
#' one data frame for each feature in the input feature collection. The data
#' frame will contain a column with cell values from each layer in the input
#' raster (and optional weighting raster) and a column indicating
#' the fraction or area of the cell that is covered by the polygon.
#'
#' If the input rasters have only one layer, the value and weight columns in the
#' data frame will be named `values` or `weights`. When the input rasters have
#' more than one layer, the columns will be named according to `names(x)` and
#' `names(weights)`. The column containing pixel coverage will be called
#' `coverage_fraction` when `coverage_area = FALSE`, or `coverage_area` when
#' `coverage_area = TRUE`. Additional columns can be added to the returned data
#' frames with the `include_area`, `include_cell`, and `include_xy` arguments.
#'
#' If the output data frames for multiple features are to be combined (e.g.,
#' with `rbind`), it may be useful to include identifying column(s) from the
#' input features in the returned data frames using `include_cols`.
#'
#' ## Predefined summary operations
#'
#' Often the individual pixel values are not needed; only one or more summary
#' statistics (e.g., mean, sum) is required for each feature. Common summary
#' statistics can be calculated by `exact_extract` directly using a predefined
#' summary operation. Where possible, this approach is advantageous because it
#' allows the package to calculate the statistics incrementally, avoiding the
#' need to store all pixel values in memory at the same time. This allows the
#' package to process arbitrarily large data with a small amount of memory. (The
#' `max_pixels_in_memory` argument can be used to fine-tune the amount of memory
#' made available to `exact_extract`.)
#'
#' To summarize pixel values using a predefined summary option, `fun` should be
#' set to a character vector of one or more operation names. If the input raster
#' has a single layer and a single summary operation is specified,
#' `exact_extract` will return a vector with the result of the summary operation
#' for each feature in the input. If the input raster has multiple layers, or if
#' multiple summary operations are specified, `exact_extract` will return a data
#' frame with a row for each feature and a column for each summary operation /
#' layer combination. (The `force_df` option can be used to always return a data
#' frame instead of a vector.)
#'
#' The following summary operations are supported:
#'
#' * `min` - the minimum non-`NA` value in any raster cell wholly or
#' partially covered by the polygon
#' * `max` - the maximum non-`NA` value in any raster cell wholly or
#' partially covered by the polygon
#' * `count` - the sum of fractions of raster cells with non-`NA`
#' values covered by the polygon
#' * `sum` - the sum of non-`NA` raster cell values, multiplied by
#' the fraction of the cell that is covered by the polygon
#' * `mean` - the mean cell value, weighted by the fraction of each cell
#' that is covered by the polygon
#' * `median` - the median cell value, weighted by the fraction of each cell
#' that is covered by the polygon
#' * `quantile` - arbitrary quantile(s) of cell values, specified in
#' `quantiles`, weighted by the fraction of each cell that is
#' covered by the polygon
#' * `mode` - the most common cell value, weighted by the fraction of
#' each cell that is covered by the polygon. Where multiple
#' values occupy the same maximum number of weighted cells,
#' the largest value will be returned.
#' * `majority` - synonym for `mode`
#' * `minority` - the least common cell value, weighted by the fraction
#' of each cell that is covered by the polygon. Where
#' multiple values occupy the same minimum number of
#' weighted cells, the smallest value will be returned.
#' * `variety` - the number of distinct values in cells that are wholly or
#' partially covered by the polygon.
#' * `variance` - the population variance of cell values, weighted by the
#' fraction of each cell that is covered by the polygon.
#' * `stdev` - the population standard deviation of cell values, weighted by
#' the fraction of each cell that is covered by the polygon.
#' * `coefficient_of_variation` - the population coefficient of variation of
#' cell values, weighted by the fraction of each
#' cell that is covered by the polygon.
#' * `weighted_mean` - the mean cell value, weighted by the product of
#' the fraction of each cell covered by the polygon
#' and the value of a second weighting raster provided
#' as `weights`
#' * `weighted_sum` - the sum of defined raster cell values, multiplied by
#' the fraction of each cell that is covered by the polygon
#' and the value of a second weighting raster provided
#' as `weights`
#' * `weighted_stdev` - the population standard deviation of cell values,
#' weighted by the product of the fraction of each cell
#' covered by the polygon and the value of a second
#' weighting raster provided as `weights`
#' * `weighted_variance` - the population variance of cell values, weighted by
#' the product of the fraction of each cell covered by
#' the polygon and the value of a second weighting
#' raster provided as `weights`
#' * `frac` - returns one column for each possible value of `x`, with the
#' the fraction of defined raster cells that are equal to that
#' value.
#' * `weighted_frac` - returns one column for each possible value of `x`,
#' with the fraction of defined cells that are equal
#' to that value, weighted by `weights.`
#'
#' In all of the summary operations, `NA` values in the the primary raster (`x`)
#' raster are ignored (i.e., `na.rm = TRUE`.) If `NA` values occur in the
#' weighting raster, the result of the weighted operation will be `NA`. `NA`
#' values in both `x` and `weights` can be replaced on-the-fly using the
#' `default_value` and `default_weight` arguments.
#'
#' ## User-defined summary functions
#'
#' If no predefined summary operation is suitable, a user-defined R function may
#' be provided as `fun`. The function will be called once for each feature and
#' must return either a single value or a data frame. The results of the
#' function for each feature will be combined and returned by `exact_extract`.
#'
#' The simplest way to write a summary function is to set
#' argument `summarize_df = TRUE`. (For backwards compatibility, this is not the
#' default.) In this mode, the summary function takes the signature
#' `function(df, ...)` where `df` is the same data frame that would be returned
#' by `exact_extract` with `fun = NULL`.
#'
#' With `summarize_df = FALSE`, the function must have the signature
#' `function(values, coverage_fractions, ...)` when weights are not used, and
#' `function(values, coverage_fractions, weights, ...)` when weights are used.
#' If the value and weight rasters each have a single layer, the function arguments
#' will be vectors; if either has multiple layers, the function arguments will
#' be data frames, with column names taken from the names of the value/weight
#' rasters. Values brought in through the `include_xy`, `include_area`,
#' `include_cell`, and `include_cols` arguments will be added to the `values`
#' data frame. For most applications, it is simpler to set `summarize_df = TRUE`
#' and work with all inputs in a single data frame.
#'
#' @param x a `RasterLayer`, `RasterStack`, `RasterBrick`, or `SpatRaster`
#' @param y a `sf`, `sfc`, `SpatialPolygonsDataFrame`, or `SpatialPolygons`
#' object with polygonal geometries
#' @param fun an optional function or character vector, as described below
#' @param weights a weighting raster to be used with the `weighted_mean`
#' and `weighted_sum` summary operations or a user-defined
#' summary function. When `weights` is set to `'area'`, the
#' cell areas of `x` will be calculated and used as weights.
#' @param coverage_area if `TRUE`, output pixel `coverage_area`
#' instead of `coverage_fraction`
#' @param default_value an optional value to use instead of `NA` in `x`
#' @param default_weight an optional value to use instead of `NA` in `weights`
#' @param quantiles quantiles to be computed when `fun = 'quantile'`
#' @param append_cols when `fun` is not `NULL`, an optional character vector
#' of columns from `y` to be included in returned data frame.
#' @param force_df always return a data frame instead of a vector, even if
#' `x` has only one layer and `fun` has length 1
#' @param summarize_df pass values, coverage fraction/area, and weights to
#' `fun` as a single data frame instead of
#' separate arguments.
#' @param full_colnames include the names of `x` and `weights` in
#' the names of the data frame for each feature, even if
#' `x` or `weights` has only one layer.
#' This is useful when the results of multiple
#' calls to `exact_extract` are combined with
#' `cbind`.
#' @param colname_fun an optional function used to construct column names.
#' Should accept arguments `values` (name of value layer),
#' `weights` (name of weight layer), `fun_name` (value of
#' `fun`), `fun_value` (value associated with `fun`, for
#' `fun %in% c('quantile', 'frac', 'weighted_frac)`
#' `nvalues` (number of value layers), `weights`
#' (number of weight layers)
#' @param include_area if `TRUE`, and `fun` is `NULL`, augment
#' the data frame for each feature with a column
#' for the cell area. If the units of the raster CRS are
#' degrees, the area in square meters will be calculated
#' based on a spherical approximation of Earth. Otherwise,
#' a Cartesian area will be calculated (and will be the
#' same for all pixels.) If `TRUE` and `fun` is
#' not `NULL`, add `area` to the data frame passed
#' to `fun` for each feature.
#' @param include_cell if `TRUE`, and `fun` is `NULL`, augment
#' the data frame for each feature with a column
#' for the cell index (`cell`). If `TRUE` and
#' `fun` is not `NULL`, add `cell` to the
#' data frame passed to `fun` for each feature.
#' @param include_cols an optional character vector of column names in
#' `y` to be added to the data frame for each
#' feature that is either returned (when `fun` is
#' `NULL`) or passed to `fun`.
#' @param include_xy if `TRUE`, and `fun` is `NULL`, augment
#' the returned data frame for each feature with columns
#' for cell center coordinates (`x` and `y`). If
#' `TRUE` and `fun` is not `NULL`, add
#' `x` and `y` to the data frame passed to `fun`
#' for each feature.
#' @param stack_apply if `TRUE`, apply `fun` independently to
#' each layer or `x` (and its corresponding layer
#' of `weights`, if provided.) The number of
#' layers in `x` and `weights` must equal
#' each other or `1`, in which case the
#' single layer raster will be recycled.
#' If `FALSE`, apply `fun` to all layers of
#' `x` (and `weights`) simultaneously.
#' @param max_cells_in_memory the maximum number of raster cells to load at
#' a given time when using a named summary operation
#' for `fun` (as opposed to a function defined using
#' R code). If a polygon covers more than `max_cells_in_memory`
#' raster cells, it will be processed in multiple chunks.
#' @param grid_compat_tol require value and weight grids to align within
#' `grid_compat_tol` times the smaller of the two
#' grid resolutions.
#' @param progress if `TRUE`, display a progress bar during processing
#' @param ... additional arguments to pass to `fun`
#' @return a vector, data frame, or list of data frames, depending on the type
#' of `x` and the value of `fun` (see Details)
#' @examples
#' rast <- raster::raster(matrix(1:100, ncol=10), xmn=0, ymn=0, xmx=10, ymx=10)
#' poly <- sf::st_as_sfc('POLYGON ((2 2, 7 6, 4 9, 2 2))')
#'
#' # named summary operation on RasterLayer, returns vector
#' exact_extract(rast, poly, 'mean')
#'
#' # two named summary operations on RasterLayer, returns data frame
#' exact_extract(rast, poly, c('min', 'max'))
#'
#' # named summary operation on RasterStack, returns data frame
#' stk <- raster::stack(list(a=rast, b=sqrt(rast)))
#' exact_extract(stk, poly, 'mean')
#'
#' # named weighted summary operation, returns vector
#' weights <- raster::raster(matrix(runif(100), ncol=10), xmn=0, ymn=0, xmx=10, ymx=10)
#' exact_extract(rast, poly, 'weighted_mean', weights=weights)
#'
#' # custom summary function, returns vector
#' exact_extract(rast, poly, function(value, cov_frac) length(value[cov_frac > 0.9]))
#'
#' @name exact_extract
#' @md
NULL
.exact_extract <- function(x, y, fun=NULL, ...,
weights=NULL,
append_cols=NULL,
coverage_area=FALSE,
default_value=NA_real_,
default_weight=NA_real_,
include_area=FALSE,
include_cell=FALSE,
include_cols=NULL,
include_xy=FALSE,
force_df=FALSE,
full_colnames=FALSE,
stack_apply=FALSE,
summarize_df=FALSE,
quantiles=NULL,
progress=TRUE,
max_cells_in_memory=30000000,
grid_compat_tol=1e-3,
colname_fun=NULL
) {
area_weights <- is.character(weights) && length(weights) == 1 && weights == 'area'
if (area_weights) {
weights <- NULL
}
.validateFlag(coverage_area, 'coverage_area')
.validateFlag(force_df, 'force_df')
.validateFlag(full_colnames, 'full_colnames')
.validateFlag(include_area, 'include_area')
.validateFlag(include_cell, 'include_cell')
.validateFlag(include_xy, 'include_xy')
.validateFlag(progress, 'progress')
.validateFlag(stack_apply, 'stack_apply')
.validateFlag(summarize_df, 'summarize_df')
.validateNumericScalar(max_cells_in_memory, 'max_cells_in_memory')
.validateNumericScalar(grid_compat_tol, 'grid_compat_tol')
.validateNumericScalarOrNA(default_value, 'default_value')
.validateNumericScalarOrNA(default_weight, 'default_weight')
.validateUniqueNames(x)
.validateUniqueNames(weights)
if(!is.null(append_cols)) {
if (!inherits(y, 'sf')) {
stop(sprintf('append_cols only supported for sf arguments (received %s)',
paste(class(y), collapse = ' ')))
}
force_df <- TRUE
}
if(!is.null(include_cols)) {
if (!inherits(y, 'sf')) {
stop(sprintf('include_cols only supported for sf arguments (received %s)',
paste(class(y), collapse = ' ')))
}
}
if(sf::st_geometry_type(y, by_geometry = FALSE) == 'GEOMETRY') {
if (!all(sf::st_dimension(y) == 2)) {
stop("Features in sfc_GEOMETRY must be polygonal")
}
}
if(!is.null(weights)) {
if (!(.isRaster(weights) || weights == 'area')) {
stop("Weights must be a Raster object or \"area\".")
}
if (is.character(fun) && !any(startsWith(fun, "weighted"))) {
warning("Weights provided but no requested operations use them.")
}
if (inherits(weights, 'BasicRaster') && !is.na(sf::st_crs(x))) {
if (is.na(sf::st_crs(weights))) {
warning("No CRS specified for weighting raster; assuming it has the same CRS as the value raster.")
} else if (sf::st_crs(x) != sf::st_crs(weights)) {
stop("Weighting raster does not have the same CRS as value raster.")
}
}
}
analysis_crs <- sf::st_crs(x)
if(is.na(sf::st_crs(x)) && !is.na(sf::st_crs(y))) {
warning("No CRS specified for raster; assuming it has the same CRS as the polygons.")
analysis_crs <- sf::st_crs(y)
} else if(is.na(sf::st_crs(y)) && !is.na(sf::st_crs(x))) {
warning("No CRS specified for polygons; assuming they have the same CRS as the raster.")
} else if(sf::st_crs(x) != sf::st_crs(y)) {
y <- sf::st_transform(y, sf::st_crs(x))
warning("Polygons transformed to raster CRS (EPSG:", sf::st_crs(x)$epsg, ")")
}
if(area_weights || include_area || coverage_area) {
area_method <- .areaMethod(analysis_crs)
} else {
area_method <- NULL
}
if (is.character(fun)) {
if (length(fun) == 0) {
stop("No summary operations provided.")
}
if (length(list(...)) > 0) {
stop("exact_extract was called with a named summary operation that ",
"does not accept additional arguments ...")
}
if (include_xy) {
stop("include_xy must be FALSE for named summary operations")
}
if (include_cell) {
stop("include_cell must be FALSE for named summary operations")
}
if (include_area) {
stop("include_area must be FALSE for named summary operations")
}
if (!is.null(include_cols)) {
stop("include_cols not supported for named_summary operations (see argument append_cols)")
}
if (summarize_df) {
stop("summarize_df can only be used when `fun` is an R function")
}
} else if (is.function(fun)) {
if (summarize_df) {
if (.num_expected_args(fun) < 1) {
stop("exact_extract was called with a function that does not appear to ",
"be of the form `function(df, ...`).")
}
} else if (is.null(weights)) {
if (.num_expected_args(fun) < 2) {
stop("exact_extract was called with a function that does not appear to ",
"be of the form `function(values, coverage_fractions, ...)`. If ",
"the summary function should accept a single data frame argument, ",
"set `summarize_df = TRUE`.")
}
} else if (.num_expected_args(fun) < 3) {
stop("exact_extract was called with a function that does not appear to ",
"be of the form `function(values, coverage_fractions, weights, ...)`.",
"If the summary function should accept a single data frame argument, ",
"set `summarize_df = TRUE`.")
}
} else if (is.null(fun)) {
if (length(list(...)) > 0) {
stop("Unexpected arguments: ", paste(names(list(...)), collapse = ','))
}
if (summarize_df) {
stop("summarize_df can only be used when `fun` is an R function")
}
if (stack_apply) {
stop("stack_apply can only be used when `fun` is a summary operation or function")
}
if (!is.null(append_cols)) {
stop("append_cols can only be used when `fun` is a summary operation or function. See `include_cols`.")
}
} else {
stop("fun must be a character vector, function, or NULL")
}
geoms <- sf::st_geometry(y)
if (requireNamespace('terra', quietly = TRUE)) {
strategies <- c('check_block_size', 'eager_load')
} else {
strategies = c()
}
x_orig <- NULL
if ('eager_load' %in% strategies && length(geoms) > 1 && (!.isInMemory(x))) {
# Eagerly load the entire area to be processed into memory. If the raster
# block sizes are large, this potentially allows us to cache data in memory
# that would not fit within the GDAL block cache (because we can cache an
# area smaller than a single block). We only do this when the terra package
# is available, because raster::crop throws an error when we set snap =
# 'out'.
if (include_cell) {
# retain a reference to the original so that we can use it for include_cell
x_orig <- x
}
x <- .eagerLoad(x, geoms, max_cells_in_memory, message_on_fail = progress)
weights <- .eagerLoad(weights, geoms, max_cells_in_memory, message_on_fail = progress)
}
# Calculate extent and resolution outside of loop for performance (yes, really)
x_ext <- .extent(x)
x_res <- .res(x)
# At this point, if the data have not been preloaded into memory, either:
# - we don't have the terra package available
# - we can't fit the whole processing area in memory
# Whether this is a problem depends on how the raster is chunked. If the
# raster is poorly chunked, we can't do anything to improve the perormance,
# but we try to detect the situation so we can alert the user.
if (!.isInMemory(x)) {
# - Do we have a RasterStack? Suggest using terra instead.
if (inherits(x, 'RasterStack')) {
message('exact_extract may perform poorly when extracting from a RasterStack. ',
'It is recommended to use a SpatRaster from the terra package instead. ',
'Convert using terra::rast(x)')
}
if (('check_block_size' %in% strategies) && inherits(x, 'SpatRaster')) {
# Can we fit at least one block from every layer in GDAL's block cache?
# If not, warn the user of expected poor performance.
block_dim <- .blockSize(x)
bytes_per_pixel <- 8L # terra has no datatype function?
block_sz_mb <- prod(block_dim[1:2])* bytes_per_pixel / 1024 / 1024
cache_sz_mb <- terra::gdalCache()
min_cache_needed_mb <- ceiling(block_sz_mb) * .numLayers(x)
if (min_cache_needed_mb >= cache_sz_mb) {
message('Loading one raster block of data per layer requires approximately ',
min_cache_needed_mb, ' MB but the GDAL block size cache is only ',
cache_sz_mb, ' MB. This is likely to result in very slow performance. ',
'It is recommended to increase the cache size using ',
'terra::gdalCache(new_size), reduce the number of layers in the ',
'input raster, or rewrite the input raster using a smaller chunk size.')
}
}
}
update_progress <- .createProgress(progress, length(geoms))
tryCatch({
x <- .startReading(x)
weights <- .startReading(weights)
if (is.character(fun)) {
# Compute all stats in C++.
# CPP_stats returns a matrix, which gets turned into a column by sapply
# Results has one column per feature and one row per stat/raster layer
if((is.null(weights) && !area_weights) && any(.isWeighted(fun))) {
stop("Weighted stat requested but no weights provided.")
}
results <- lapply(sf::st_as_binary(geoms, EWKB=TRUE), function(wkb) {
ret <- CPP_stats(x, x_ext, x_res, weights, wkb, default_value, default_weight, coverage_area, area_method, fun, max_cells_in_memory, grid_compat_tol, quantiles)
update_progress()
return(ret)
})
if ('frac' %in% fun || 'weighted_frac' %in% fun) {
unique_values <- sort(unique(do.call(c, lapply(results, function(r) attr(r, 'unique_values')))))
} else {
unique_values <- numeric()
}
result_cols <- .resultColumns(names(x), names(weights), fun, full_colnames, quantiles, unique_values, colname_fun = colname_fun)
consistent_cols <- !(result_cols$stat_name %in% c('frac', 'weighted_frac'))
# Construct an empty matrix that we can populate with stats returned
# for each geometry, with 0 as a default where a geometry does not
# return a stat (e.g., 'frac' for a specific value). Then convert the
# filled matrix to a data frame. (This is faster than populating the
# data frame directly, because the data frame assignment operator is
# slow.)
result_mat <- matrix(0.0, nrow = length(geoms), ncol = nrow(result_cols))
for (i in seq_along(results)) {
cols <- consistent_cols | result_cols$base_value %in% attr(results[[i]], 'unique_values')
result_mat[i, cols] <- results[[i]]
}
colnames(result_mat) <- result_cols$colname
result_df <- as.data.frame(result_mat)
if (ncol(result_df) == 1 && !force_df) {
return(result_df[[1]])
}
# drop duplicated columns (occurs when an unweighted stat is
# requested alongside a weighted stat, with a stack of weights)
result_df <- result_df[, unique(names(result_df)), drop = FALSE]
if (!is.null(append_cols)) {
result_df <- cbind(sf::st_drop_geometry(y[, append_cols]), result_df)
}
return(result_df)
} else {
num_values <- .numLayers(x)
value_names <- names(x)
if (.isRaster(weights)) {
num_weights <- .numLayers(weights)
weight_names <- names(weights)
} else if (area_weights) {
num_weights <- 1
weight_names <- 'area'
weights <- NULL
} else {
num_weights <- 0
weight_names <- NULL
}
if (stack_apply || (num_values == 1 && num_weights <= 1)) {
apply_layerwise <- TRUE
if (num_values > 1 && num_weights > 1 && num_values != num_weights) {
stop(sprintf("Can't apply function layerwise with stacks of %d value layers and %d layers", num_values, num_weights))
}
result_names <- .resultColNames(value_names, weight_names, fun, full_colnames, colname_fun = colname_fun)
num_results <- max(num_weights, num_values)
ind <- .valueWeightIndexes(num_values, num_weights)
} else {
apply_layerwise <- FALSE
}
# For R summary functions and data frame output, we avoid using
# input layer names if there is only one value/weight layer
if (length(value_names) == 1) {
value_names <- 'value'
}
if (length(weight_names) == 1) {
weight_names <- 'weight'
}
ret <- lapply(seq_along(geoms), function(feature_num) {
wkb <- sf::st_as_binary(geoms[[feature_num]], EWKB=TRUE)
if (!is.null(include_cols)) {
include_col_values <- sf::st_drop_geometry(y[feature_num, include_cols])
} else {
include_col_values <- NULL
}
# only raise a disaggregation warning for the first feature
warn_on_disaggregate <- feature_num == 1
col_list <- CPP_exact_extract(x,
x_ext,
x_res,
x_orig,
weights,
wkb,
default_value,
default_weight,
include_xy,
include_cell,
include_area,
area_weights,
coverage_area,
area_method,
include_col_values,
value_names,
weight_names,
warn_on_disaggregate,
grid_compat_tol)
if (coverage_area) {
coverage_col <- 'coverage_area'
} else {
coverage_col <- 'coverage_fraction'
}
if (!is.null(include_cols)) {
# Replicate the include_cols vectors to be as long as the other columns,
# so we can use quickDf
nrow <- length(col_list[[coverage_col]])
col_list[include_cols] <- lapply(col_list[include_cols], rep, nrow)
}
df <- .quickDf(col_list)
update_progress()
# No summary function? Return the whole data frame.
if (is.null(fun)) {
return(df)
}
# Summary function accepts a data frame? Pass it along.
if (summarize_df && !apply_layerwise) {
return(fun(df, ...))
}
# Break the data frame into components that we can pass
# separately to the summary functions.
included_cols_df <- df[, !(names(df) %in% c(value_names, weight_names, coverage_col)), drop = FALSE]
vals_df <- df[, value_names, drop = FALSE]
weights_df <- df[, weight_names, drop = FALSE]
cov_fracs <- df[[coverage_col]]
if (apply_layerwise) {
result <- lapply(seq_len(num_results), function(i) {
if (summarize_df) {
# Pack everything into a single data frame and pass it to `fun`
arg_df <- cbind(value = vals_df[[ind$values[i]]],
included_cols_df)
if (num_weights > 0) {
arg_df$weight <- weights_df[[ind$weights[i]]]
}
arg_df[[coverage_col]] <- df[[coverage_col]]
return(fun(arg_df, ...))
} else {
# Pull values and weights out into vectors, unless we have
# included columns (x/y/cell, etc.) in which case values
# remain a data frame. Retained for backwards compat.
vx <- vals_df[, ind$values[i]]
if (ncol(included_cols_df) > 0) {
vx <- cbind(data.frame(value = vx), included_cols_df)
}
if (num_weights == 0) {
return(fun(vx, cov_fracs, ...))
} else {
return(fun(vx, cov_fracs, weights_df[, ind$weights[i]], ...))
}
}
})
if (num_results == 1) {
return(result[[1]])
}
names(result) <- result_names
return(.quickDf(result))
} else {
# Pass all layers to callback, to be handled together
# Included columns (x/y/cell) are passed with the values.
# Pass single-column data frames as vectors.
vals_df <- .singleColumnToVector(cbind(vals_df, included_cols_df))
weights_df <- .singleColumnToVector(weights_df)
if (num_weights == 0) {
return(fun(vals_df, cov_fracs, ...))
} else {
return(fun(vals_df, cov_fracs, weights_df, ...))
}
}
})
# if we have columns to append, iterate over the results and
# append the columns to each, coercing into a data frame if
# necessary. We need to iterate over the results before binding
# them together because we don't know the legnth of each result
# or even if their lengths are constant.
if (!is.null(append_cols)) {
for (i in seq_along(ret)) {
if (!is.data.frame(ret[[i]])) {
ret[[i]] = data.frame(result = ret[[i]])
}
if (nrow(ret[[i]]) >= 1) {
append_row <- i
} else {
# cbinding row 0 cleanly brings in zero-length columns
# of the correct names and types, in the correct positions
append_row <- 0
}
ret[[i]] <- cbind(sf::st_drop_geometry(y[append_row, append_cols]),
ret[[i]],
row.names = NULL)
}
}
if (!is.null(fun)) {
if (all(sapply(ret, is.data.frame))) {
# function returned a data frame for each polygon? rbind them
if (requireNamespace('dplyr', quietly = TRUE)) {
ret <- dplyr::bind_rows(ret) # handle column name mismatches
} else {
ret <- do.call(rbind, ret)
}
} else {
# function returned something else; combine the somethings into
# an array
ret <- simplify2array(ret)
if (force_df) {
ret <- data.frame(result = ret)
}
}
}
return(ret)
}
}, finally={
.stopReading(x)
.stopReading(weights)
})
}
# faster replacement for as.data.frame when input is a named list
# with equal-length columns
# from Advanced R, sec. 24.4.2
.quickDf <- function(lst) {
class(lst) <- 'data.frame'
attr(lst, 'row.names') <- .set_row_names(length(lst[[1]]))
lst
}
.singleColumnToVector <- function(df) {
if (ncol(df) == 1) {
df[, 1]
} else {
df
}
}
#' @import sf
#' @import raster
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='sf'),
.exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='SpatialPolygonsDataFrame'),
function(x, y, ...) .exact_extract(x, sf::st_as_sf(y), ...))
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='SpatialPolygons'),
function(x, y, ...) .exact_extract(x, sf::st_as_sf(y), ...))
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='sfc_MULTIPOLYGON'), .exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='sfc_POLYGON'), .exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='sfc_GEOMETRY'), .exact_extract)
# CRAN version of sf does not explicitly declare this class. If we do not do it
# ourselves, documentation is not generated for the `sfc_GEOMETRYCOLLECTION`
# overload.
setOldClass('sfc_GEOMETRYCOLLECTION')
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='Raster', y='sfc_GEOMETRYCOLLECTION'), .exact_extract)
#' @import sf
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='sf'),
.exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='SpatialPolygonsDataFrame'),
function(x, y, ...) .exact_extract(x, sf::st_as_sf(y), ...))
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='SpatialPolygons'),
function(x, y, ...) .exact_extract(x, sf::st_as_sf(y), ...))
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='sfc_MULTIPOLYGON'), .exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='sfc_POLYGON'), .exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='sfc_GEOMETRY'), .exact_extract)
#' @useDynLib exactextractr
#' @rdname exact_extract
#' @export
setMethod('exact_extract', signature(x='SpatRaster', y='sfc_GEOMETRYCOLLECTION'), .exact_extract)
|