1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
---
title: "2. Summarizing categorical data"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{2. Summarizing categorical data}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7
)
knitr::opts_knit$set(
global.par = TRUE
)
```
```{r, include = FALSE}
par(mar = c(1, 1, 1, 1))
```
## Introduction
This vignette builds upon the sample data for São Miguel (introduced in
[the previous vignette](vig1_population.html)) to demonstrate the use of `exactextractr`
with categorical land cover data. A sample of the
[CORINE 2018](https://land.copernicus.eu/pan-european/corine-land-cover/clc2018)
raster dataset is included in `exactextractr`.
As in the previous vignette, the following packages are used:
```{r setup, message = FALSE}
library(exactextractr)
library(dplyr)
library(sf)
library(raster)
```
## Loading the sample data
First, we load the CORINE land cover data and the _concelho_ boundaries.
```{r}
clc <- raster(system.file('sao_miguel/clc2018_v2020_20u1.tif',
package = 'exactextractr'))
concelhos <- st_read(system.file('sao_miguel/concelhos.gpkg',
package = 'exactextractr'),
quiet = TRUE)
```
```{r, echo = FALSE}
corine_palette <- c(
"#e6004d", "#ff0000", "#cc4df2", "#cc0000", "#e6cccc", "#e6cce6", "#a600cc",
"#a64d00", "#ff4dff", "#ffa6ff", "#ffe6ff", "#ffffa8", "#ffff00", "#e6e600",
"#e68000", "#f2a64d", "#e6a600", "#e6e64d", "#ffe6a6", "#ffe64d", "#e6cc4d",
"#f2cca6", "#80ff00", "#00a600", "#4dff00", "#ccf24d", "#a6ff80", "#a6e64d",
"#a6f200", "#e6e6e6", "#cccccc", "#ccffcc", "#000000", "#a6e6cc", "#a6a6ff",
"#4d4dff", "#ccccff", "#e6e6ff", "#a6a6e6", "#00ccf2", "#80f2e6", "#00ffa6",
"#a6ffe6", "#e6f2ff", "#ffffff")
plot(clc, col = corine_palette,
axes = FALSE, legend = FALSE)
plot(st_geometry(concelhos), add = TRUE)
```
The land cover class descriptions are provided in a separate DBF file. We read
this in to a data frame, then use `levels()` to associate the class descriptions
with the raster.
```{r}
clc_classes <- foreign::read.dbf(system.file('sao_miguel/clc2018_v2020_20u1.tif.vat.dbf',
package = 'exactextractr'),
as.is = TRUE) %>%
dplyr::select(value = Value,
landcov = LABEL3)
levels(clc) <- list(data.frame(ID = clc_classes$value,
landcov = clc_classes$landcov))
```
This association provides us with a way to look up the description for a given
ID. Alternatively, we can relate the values using `merge` or a ``dplyr` join.
```{r}
factorValues(clc, c(2, 18, 24))
```
## Summarizing land cover classifications
One of the most basic questions we might ask is which land cover classification
is predominant in each _concelho_. We can do this with the built-in `mode`
summary operation. The `minority` and `variety` operations are also applicable
to categorical data and provide the least-common classification and number of
distinct classifications, respectively.
```{r landcov-mode}
landcov_mode <- exact_extract(clc, concelhos, 'mode',
append_cols = 'name', progress = FALSE) %>%
inner_join(clc_classes, by=c(mode = 'value'))
```
```{r landcov-mode-table, echo = FALSE}
landcov_mode %>%
dplyr::select(-mode) %>%
knitr::kable()
```
### Summary functions
While `mode` provides a handy way to see the most common land cover category, we
need to write a custom summary function if we want to see the frequency of
different land cover types in an area.
Summary functions are called once per feature from the input `sf` object. They
can return either:
* a scalar, in which case the return value of `exact_extract` will be a vector
whose entries correspond with the rows of the input `sf` object, or
* a data frame, in which case `exact_extract` will return a rowwise combination
of the data frames for each feature. If the data frame returned by the
summary function will have than a single row, it is useful for some
identifying information to be included in the returned data frame.
If we are going to perform typical data frame operations on the raster values
and coverage fractions, it can be more convenient for the summary function to
accept a single data frame argument, instead of separate arguments for the cell
values and coverage fractions. This behavior can be enabled with the
`summarize_df` argument.
Using this method, we can calculate the fraction of each _concelho_ that is
covered by each land cover category:
```{r landcov-fracs, message = FALSE}
landcov_fracs <- exact_extract(clc, concelhos, function(df) {
df %>%
mutate(frac_total = coverage_fraction / sum(coverage_fraction)) %>%
group_by(name, value) %>%
summarize(freq = sum(frac_total))
}, summarize_df = TRUE, include_cols = 'name', progress = FALSE)
```
Here we use the `include_cols` argument here to include the `name` column from
`concelhos` in the data frame passed to the summary function. (Although the
value of `name` will be the same for all rows in `df`, we include `name` in the
`group_by` expression so that it is not removed by `summarize`.) Other similar
arguments include `include_xy` to get the cell center coordinates,
`include_area` to get the cell area, and `include_cell` to get the cell index
used by the `raster` package.
This provides us with a correspondence between each numeric land cover category
and its frequency in each _concelho_:
```{r}
head(landcov_fracs)
```
Joining this table to `clc_classes`, we can associate the descriptions with the
numeric types and view the three most common land cover classes in each
_concelho_:
```{r landcov-fracs-table}
landcov_fracs %>%
inner_join(clc_classes, by = 'value') %>%
group_by(name) %>%
arrange(desc(freq)) %>%
slice_head(n = 3) %>%
mutate(freq = sprintf('%0.1f%%', 100*freq)) %>%
knitr::kable()
```
Similarly, we can find the top land covers by area:
```{r landcov-areas, message = FALSE}
landcov_areas <- exact_extract(clc, concelhos, function(df) {
df %>%
group_by(name, value) %>%
summarize(area_km2 = sum(coverage_area) / 1e6)
}, summarize_df = TRUE, coverage_area = TRUE, include_cols = 'name', progress = FALSE)
```
```{r landcov-areas-table, echo = FALSE}
landcov_areas %>%
inner_join(clc_classes, by = 'value') %>%
dplyr::select(-value) %>%
group_by(name) %>%
arrange(desc(area_km2)) %>%
slice_head(n = 3) %>%
knitr::kable()
```
## Summarizing population land cover
One extension of the analysis above is to see which land covers are associated
with human population in a given _concelho_. Is the population primary urban or
rural?
As described in the previous vignette, the population density raster provides
the most robust results in the presence of partially-covered pixels.
```{r load-pop-density}
pop_density <- raster(system.file('sao_miguel/gpw_v411_2020_density_2020.tif',
package = 'exactextractr'))
```
We are able to perform this analysis because the CORINE sample distributed with
`exactextractr` has been reprojected from its native Lambert Equal Area
projection into geographic coordinates consistent with GPW. Otherwise, working
with multiple rasters in different projections requires transformation to a
common grid using tools such as `raster::projectRaster` or the `gdalwarp`
command-line utility.
Very little about the call to `exact_extract` requires changing to incorporate
population. We set `weights = pop_density` and, since we are using the
`summarize_df` option, a column called `weight` will be added to the data frame
passed to the summary function. We also set `coverage_area = TRUE` so that we
can multiply the density by the covered pixel area to get a population count.
```{r landcov-pop-areas, message = FALSE, results = FALSE}
landcov_pop_areas <- exact_extract(clc, concelhos, function(df) {
df %>%
group_by(name, value) %>%
summarize(pop = sum(coverage_area * weight / 1e6)) %>%
mutate(pop_frac = pop / sum(pop))
}, weights = pop_density, coverage_area = TRUE,
summarize_df = TRUE, include_cols = 'name')
```
Looking at the highest-population land cover type in each _concelho_, we can
can see that the western/central _concelhos_ of Lagoa, Ponta Delgada, Ribeira
Grande, and Vila Franca do Campo have a more urban population than Nordeste or
Povoação to the east.
```{r landcov-pop-areas-table, echo = FALSE}
landcov_pop_areas %>%
inner_join(clc_classes, by = 'value') %>%
group_by(name) %>%
arrange(desc(pop_frac)) %>%
slice_head(n = 1) %>%
dplyr::select(name, landcov, pop, pop_frac) %>%
mutate(pop = round(pop),
pop_frac = round(pop_frac, 3)) %>%
knitr::kable()
```
|