File: Krig.se.test.R

package info (click to toggle)
r-cran-fields 11.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,140 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 33; makefile: 2
file content (194 lines) | stat: -rw-r--r-- 5,400 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
 # fields is a package for analysis of spatial data written for
  # the R software environment .
  # Copyright (C) 2018
  # University Corporation for Atmospheric Research (UCAR)
  # Contact: Douglas Nychka, nychka@ucar.edu,
  # National Center for Atmospheric Research,
  # PO Box 3000, Boulder, CO 80307-3000
  #
  # This program is free software; you can redistribute it and/or modify
  # it under the terms of the GNU General Public License as published by
  # the Free Software Foundation; either version 2 of the License, or
  # (at your option) any later version.
  # This program is distributed in the hope that it will be useful,
  # but WITHOUT ANY WARRANTY; without even the implied warranty of
  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  # GNU General Public License for more details.


suppressMessages(library(fields))

# tests of predictSE
# against direct linear algebra 

#options( echo=FALSE)

test.for.zero.flag<- 1

x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0))


Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50)-> out


# direct calculation
Krig.Amatrix( out, x=x0)-> A
test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict")

Sigma<- out$rhohat*Exp.cov( ChicagoO3$x, ChicagoO3$x, theta=50)
S0<- out$rhohat*c(Exp.cov( x0, x0, theta=50))
S1<- out$rhohat*Exp.cov( out$x, x0, theta=50)

#yhat= Ay
#var( f0 - yhat)=    var( f0) - 2 cov( f0,yhat)+  cov( yhat)

look<- S0 - t(S1)%*% t(A) - A%*%S1 +  
       A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM))%*% t(A)
#
#compare to 
# diagonal elements


test2<- predictSE( out, x= x0) 
test.for.zero( sqrt(diag(  look)), test2,tag="Marginal predictSE")

out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50,
            lambda=out$lambda)

test2<- predictSE( out2, x= x0) 
test.for.zero( sqrt(diag(  look)), test2,tag="Marginal predictSE fixed ")

test<- predictSE( out, x= x0, cov=TRUE)
test.for.zero( look, test,tag="Full covariance predictSE")


# simulation based.

set.seed( 333)

sim.Krig( out, x0,M=4e3)-> test

var(test)-> look

predictSE( out, x=x0)-> test2
mean( diag( look)/ test2**2)-> look2
test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.")

predictSE( out, x=x0, cov=TRUE)-> test2

# multiply simulated values by inverse square root of covariance
# to make them white

eigen( test2, symmetric=TRUE)-> hold
hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold
cor(test%*% hold)-> hold2
# off diagonal elements of correlations -- expected values are zero. 

abs(hold2[ col(hold2)> row( hold2)])-> hold3

test.for.zero(   mean(hold3), 0, relative=FALSE, tol=.02,
          tag="Full covariance standard Cond. Sim.")


# test of sim.Krig.approx.R
#
# first create and check a gridded test case. 


data( ozone2)
as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, 
          na.rm=TRUE)-> dtemp
#
# A useful disctrtized version of ozone2 data
 
x<- dtemp$xd
y<- dtemp$z[ dtemp$ind]
weights<- dtemp$weights[ dtemp$ind]

Krig( x, y, Covariance="Matern", 
   theta=1.0, smoothness=1.0, weights=weights) -> out



  set.seed(234)
  ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5))

  x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) 

# an  inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2)

# direct calculation as backup ( also checks weighted case)

Krig.Amatrix( out, x=x0)-> A
test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict")

Sigma<- out$rhohat*stationary.cov( 
out$xM, out$xM, theta=1.0,smoothness=1.0, Covariance="Matern")

S0<- out$rhohat*stationary.cov( 
x0, x0, theta=1.0,smoothness=1.0, Covariance="Matern")

S1<- out$rhohat*stationary.cov(
out$xM, x0, theta=1.0,smoothness=1.0, Covariance="Matern")



#yhat= Ay
#var( f0 - yhat)=    var( f0) - 2 cov( f0,yhat)+  cov( yhat)
 
look<- S0 - t(S1)%*% t(A) - A%*%S1 +
       A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM) )%*% t(A)

test<- predictSE( out, x0, cov=TRUE)

test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full 
cov", tol=1e-8)

########################################################################
######### redo test with smaller grid to speed things up
#cat("Conditional simulation test -- this takes some time", fill=TRUE)

# redo data set to smaller grid size
##D N1<-4
##D N2<-5
##D as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=N2, nx=N1, 
##D          na.rm=TRUE)-> dtemp
#
# A useful discretized version of ozone2 data
 
##D xd<- dtemp$xd
##D y<- dtemp$z[ dtemp$ind]
##D weights<- dtemp$weights[ dtemp$ind]

##D Krig( xd, y, Covariance="Matern", 
##D    theta=1.0, smoothness=1.0, weights=weights) -> out


##D xr<- range( dtemp$x)
##D yr<- range( dtemp$y)
##D M1<-N1
##D M2<- N2
##D glist<- list( x=seq( xr[1], xr[2],,M1) , y=seq( yr[1], yr[2],,M2))

##D set.seed( 233)
# with extrap TRUE this finesses problems with
# how NAs are handled in var below

##D sim.Krig.approx( out, grid= glist, M=3000, extrap=TRUE)-> look

##D predictSE( out, make.surface.grid( glist))-> test


##D look2<- matrix( NA, M1,M2)

##D for(  k in 1:M2){
##D     for ( j in 1:M1){
##D       look2[j,k] <- sqrt(var( look$z[j,k,], na.rm=TRUE)) }
##D }


##D test.for.zero(  1-mean(c(look2/test), na.rm=TRUE), 0, relative=FALSE, 
##D tol=.001, tag="Conditional simulation marginal se for grid")

cat("all done testing predictSE ", fill=TRUE)
options( echo=TRUE)