1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
# fields is a package for analysis of spatial data written for
# the R software environment .
# Copyright (C) 2018
# University Corporation for Atmospheric Research (UCAR)
# Contact: Douglas Nychka, nychka@ucar.edu,
# National Center for Atmospheric Research,
# PO Box 3000, Boulder, CO 80307-3000
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
suppressMessages(library(fields))
#
#
# test of fixed lambda case
# Check against linear algebra
#
options( echo=FALSE)
test.for.zero.flag<-1
Krig( ChicagoO3$x, ChicagoO3$y, theta=50)-> fit
x<- ChicagoO3$x
K<- Exp.cov(x, x,theta=50)
T<- fields.mkpoly(x, 2)
W<- diag( 20)
lambda<- fit$lambda
M<- (lambda* diag(20) + K)
###########################
test.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% fit$yM)
test.c<- solve( M)%*% ( fit$yM - T%*% test.d)
#compare to fit$d
test.for.zero( test.d, fit$d, tag="Compare d coef" )
#compare to fit$d
test.for.zero( test.c, fit$c,tag="Compare c coef" )
Krig( ChicagoO3$x, ChicagoO3$y, theta=50,lambda= fit$lambda)-> fit2
#compare to fit$d
test.for.zero( test.d, fit2$d, tag="Compare d coef fixed lambda" )
#compare to fit$d
test.for.zero( test.c, fit2$c,tag="Compare c coef fixed lambda" )
# test of Krig.coef
Krig.coef( fit)->test
test.for.zero( test.d, test$d, tag="d coef Krig.coef" )
test.for.zero( test.c, test$c, tag= "c coef Krig.coef" )
Krig.coef( fit2)->test
test.for.zero( test.d, test$d,tag="d coef Krig.coef fixed" )
test.for.zero( test.c, test$c, tag="c coef Krig.coef fixed" )
# checking A matrix in the case of noreps
set.seed( 222)
weights<- 10+ runif( length(ChicagoO3$y))
#weights<- rep( 1, 20)
test2<- Krig( ChicagoO3$x, ChicagoO3$y, theta=50, weights= weights)
Atest<- Krig.Amatrix( test2)
K<-Exp.cov(ChicagoO3$x, ChicagoO3$x,theta=50)
H<- matrix(0, 23,23)
H[(1:20)+3 , (1:20)+3]<- K
X<- cbind( fields.mkpoly( ChicagoO3$x, 2), K)
lambda<- test2$lambda
Alam <- X%*%solve(
t(X)%*%diag(weights)%*%X + lambda*H
)%*% t(X)%*%diag(weights)
test.for.zero( Alam, Atest, tag="Amatrix no reps", tol=5e-8)
# test for new y fixed case
set.seed( 123)
ynew<- rnorm( fit2$N)
test.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% ynew)
test.c<- solve( M)%*% ( ynew - T%*% test.d)
Krig.coef( fit, y= ynew)->test
test.for.zero( test.d, test$d, tag= "d coef new y" )
test.for.zero( test.c, test$c, tag="c coef new y" )
Krig.coef( fit2, y= ynew)->test
test.for.zero( test.d, test$d, tag= "d coef new y fixed" )
test.for.zero( test.c, test$c, tag=" c coef new y fixed" )
# test for multiple new y's
Krig.coef( fit2, y= cbind( ynew+ rnorm(fit2$N), ynew))->test2
test.for.zero( test.d, test2$d[,2], tag= "d coef several new y fixed" )
test.for.zero( test.c, test2$c[,2], tag=" c coef several new y fixed" )
#cat("done with simple Krig data", fill=TRUE)
# These tests are about whether decompositions
# handle just a fixed lambda or are more general
# checking passing lambda or df to Krig
Tps( ChicagoO3$x, ChicagoO3$y,lambda=.001 )-> out
predict( out, lambda=.001)-> out2
test.for.zero( out2, predict( out), tag="Tps with fixed lam")
Tps( ChicagoO3$x, ChicagoO3$y, df=5)-> out
predict( out, df=5)-> out2
test.for.zero( out2, predict( out), tag="Tps with fixed df")
# same for Krig
Krig( ChicagoO3$x, ChicagoO3$y, theta=50,lambda=.5)-> out0
Krig( ChicagoO3$x, ChicagoO3$y, theta=50,lambda=.5,GCV=TRUE)-> out
test.for.zero(
predict(out0), predict( out), tag="Krig with fixed lam argument")
Krig( ChicagoO3$x, ChicagoO3$y, theta=50)-> out0
Krig( ChicagoO3$x, ChicagoO3$y, theta=50, df=6,GCV=TRUE)-> out
predict( out0, df=6)-> out2
test.for.zero( out2, predict( out), tag="Krig with fixed lam argument")
#cat("A very nasty case with knots and weights",fill=TRUE)
set.seed(123)
x<- matrix( runif( 30), 15,2)
y<- rnorm( 15)*.01 + x[,1]**2 + x[,2]**2
knots<- x[1:5,]
weights<- runif(15)*10
# compare to
Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights)-> out.new
Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights,
lambda=1)-> out.new2
# compute test using linear algebra
K<- Exp.cov( knots, knots)
H<- matrix(0, 8,8)
H[4:8, 4:8]<- K
X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, knots))
lambda<-1
c( solve(t(X)%*%(weights*X) + lambda*H)%*% t(X)%*% (weights*y) )-> temp
temp.c<- temp[4:8]
temp.d<- temp[1:3]
# test for d coefficients
test.for.zero( out.new2$d, temp.d, tag=" d coef")
# test for c coefficents
test.for.zero( out.new2$c, temp.c, tag="c coef" )
# compare to
Krig.coef( out.new, lambda=1)->test
# and
# test for d coefficients
test.for.zero( temp.d, test$d, tag="d new y Krig.coef")
# test for c coefficents
test.for.zero( temp.c, test$c, tag="c new y Krig.coef" )
# and
Krig.coef( out.new2, lambda=1)-> test
# test for d coefficients
test.for.zero( temp.d, test$d, tag= "d fixed case")
# test for c coefficents
test.for.zero( temp.c, test$c, tag=" c fixed case" )
#cat( "done with knots and weights case", fill=TRUE)
#
# test with new y
#
lam.test <- 1.0
ynew<- 1:15
Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights)-> out.new
Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights,
lambda=lam.test)-> out.new2
### compare to
##Krig( x,ynew, knots=knots, cov.function=Exp.cov,weights=weights)-> out.new
##Krig( x,ynew, knots=knots, cov.function=Exp.cov,weights=weights,
## lambda=lam.test)-> out.new2
c( solve(t(X)%*%(weights*X) + lam.test*H)%*% t(X)%*% (weights*ynew) )-> temp
temp.d<- temp[1:3]
temp.c<- temp[4:8]
#compare
Krig.coef( out.new,lambda=lam.test,y=ynew)-> test
# test for d coefficients
test.for.zero( temp.d, test$d, tag=" d new y")
# test for c coefficents
test.for.zero( temp.c, test$c,tag= "c new y" )
Krig.coef( out.new2,y=ynew)-> test
# test for d coefficients
test.for.zero( temp.d, test$d, tag= "d new y fixed")
# test for c coefficents
test.for.zero( temp.c, test$c, tag= "c new y fixed" )
#cat( "done with new y case for nasty data ", fill=TRUE)
#
#cat("test with reps" , fill=TRUE)
#
set.seed(133)
x<- matrix( runif( 30), 15,2)*2
x<- rbind( x,x, x[3:7,])
y<- rnorm( nrow( x))*.05 + + x[,1]**2 + x[,2]**2
# perturb so that this example does not generate (harmless) warnings in gcv search
y[20] <- y[20] + 1
weights<- runif( nrow( x))*10
knots<- x[1:10,]
Krig( x,y, knots=knots, weights=weights, cov.function=Exp.cov)-> out.new
lambda<- 1.0
NP<- out.new$np
NK <- nrow( knots)
K<- Exp.cov( knots, knots)
H<- matrix(0, NP,NP)
H[(1:NK)+3 , (1:NK)+3]<- K
X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, knots))
# compare to
test<- c( solve(t(X)%*%diag(weights)%*%X + lambda*H)%*%
t(X)%*%diag(weights)%*% y )
test[1:3]-> temp.d
test[(1:NK)+3]-> temp.c
Krig( x,y, knots=knots, weights=weights,lambda=lambda,
cov.function=Exp.cov)-> out.new
# test for d coefficients
test.for.zero( temp.d, out.new$d, tag=" d reps")
# test for c coefficents
test.for.zero( temp.c, out.new$c, tag="c reps" )
Krig( x,y, knots=knots, weights=weights, cov.function=Exp.cov)-> out.new
#compare to
test<- sum(weights*
(y-X%*%solve(t(X)%*%diag(weights)%*%X) %*% t(X)%*%diag(weights)%*% y)**2
)
test.for.zero(out.new$pure.ss, test, tag=" pure sums of squares")
#cat("done with reps case", fill=TRUE)
##################################
#cat( "test A matrix",fill=TRUE)
##################################
set.seed(133)
x<- matrix( runif( 30), 15,2)*2
x<- rbind( x,x, x[3:7,])
y<- rnorm( nrow( x))*.05 + + x[,1]**2 + x[,2]**2
# perturb so that this example does not generate (harmless) warnings in gcv search
y[20] <- y[20] + 1
weights<- runif( nrow( x))*10
knots<- x[1:10,]
Krig( x,y, knots=knots, weights=weights, cov.function=Exp.cov)-> out.new
NP<- out.new$np
NK <- nrow( knots)
K<- Exp.cov( knots, knots)
H<- matrix(0, NP,NP)
H[(1:NK)+3 , (1:NK)+3]<- K
X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, knots))
lambda<- out.new$lambda
Alam= X%*%solve(t(X)%*%diag(weights)%*%X + lambda*H)%*% t(X)%*%diag(weights)
test<- c(Alam%*% y)
# compare to
test2<-predict( out.new)
test.for.zero( test,test2, tag="Amatrix prediction")
#
test<- sum( diag( Alam))
test2<- out.new$eff.df
test.for.zero( test,test2)
Krig.Amatrix( out.new, lambda=lambda)-> Atest
test.for.zero( sum( diag(Atest)),test2, tag=" trace from A matrix")
test.for.zero( Atest%*%out.new$yM, predict(out.new))
yjunk<- rnorm( 35)
yMtemp<- Krig.ynew(out.new, yjunk)$yM
test.for.zero( Atest%*%yMtemp, predict(out.new, y=yjunk),
tag="A matrix predict with new y")
test.for.zero( Atest%*%yMtemp, predict(out.new, yM= yMtemp),
tag="A matrix predict compared to collapsed yM")
test.pure.ss<- sum(weights*
(y-X%*%solve(t(X)%*%diag(weights)%*%X) %*% t(X)%*%diag(weights)%*% y)**2
)
test.for.zero( out.new$pure.ss, test.pure.ss,tag="pure sums of squares")
#cat("done with A matrix case", fill=TRUE)
#
# check of GCV etc.
lambda<- out.new$lambda
Alam= X%*%solve(t(X)%*%diag(weights)%*%X + lambda*H)%*% t(X)%*%diag(weights)
test<- c(Alam%*% y)
# compare to
test2<-predict( out.new)
#test.for.zero( test,test2, tag="double check A matrix predict")
N<- length( y)
test<- sum( diag( Alam))
# compare to
test2<- out.new$eff.df
test.for.zero( test,test2, tag=" check trace")
|