1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# fields is a package for analysis of spatial data written for
# the R software environment .
# Copyright (C) 2018
# University Corporation for Atmospheric Research (UCAR)
# Contact: Douglas Nychka, nychka@ucar.edu,
# National Center for Atmospheric Research,
# PO Box 3000, Boulder, CO 80307-3000
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# this is a test script to verify the likelihood computations are
# correct with the eigen decomposition format used in Krig
# see Krig.flplike for the concise computation.
#
suppressMessages(library(fields))
options( echo=FALSE)
test.for.zero.flag<- 1
data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
is.good <- !is.na( y)
x<- x[is.good,]
y<- y[is.good]
theta<- 2.0
# check log likelihood calculation
nu<- 1.5
lambda<- .2
out<- mKrig( x,y, theta=theta,Covariance="Matern", smoothness=nu, lambda=lambda)
# peg rho and sigma as MLEs from mKrig
rho <- out$rho.MLE
sigma2<- rho*lambda
N<- length( y)
dd<- rdist( x,x)
M<- rho* Matern( dd, range= theta, smoothness=nu) + sigma2* diag( 1, N)
X<- fields.mkpoly( x, 2)
Mi<- solve( M)
betahat<- solve(t(X)%*%Mi%*%X)%*% t(X)%*% Mi%*% y
res<- y - X%*%betahat
ccoef<- ( Mi%*% ( res))*rho
# sanity check that estimates are the same
test.for.zero( ccoef, out$c, tag="check ccoef")
# find full log likelihood
chol(M)-> cM
lLike<- -(N/2)*log(2*pi) - (1/2)* (2*sum( log( diag(cM)))) - (1/2)* t(res)%*% Mi %*% res
# formula for full likelihood using peices from mKrig
lLike.test<- -(N/2)*log(2*pi) - (1/2)* out$lnDetCov - (1/2)*(N)*log( rho) - (1/2)*out$quad.form/rho
test.for.zero( lLike, lLike.test, tag="llike full verses rhohat")
test.for.zero( lLike, out$lnProfileLike, tag="llike profile from mKrig")
# REML check
nu<- 1.5
theta<- .6
obj<- Krig( x,y, theta=theta,Covariance="Matern", smoothness=nu )
# sanity check that c coefficients agree with Krig
rho<- 500
lambda<- .2
sigma2<- lambda*rho
hold<- REML.test( x,y,rho, sigma2, theta, nu=1.5)
ccoef2<- Krig.coef( obj, lambda)$c
test.for.zero( hold$ccoef, ccoef2, tag="ccoefs")
# check RSS with Krig decomposition.
RSS1<- sum( (lambda*ccoef2)**2)
lD <- obj$matrices$D * lambda
RSS2 <- sum(((obj$matrices$u * lD)/(1 + lD))^2)
test.for.zero( RSS2, RSS1, tag=" RSS using matrices")
# check quadratic form with Krig
D.temp<- obj$matrices$D[ obj$matrices$D>0]
A3test<- (1/lambda)* obj$matrices$V %*% diag((D.temp*lambda)/ (1 +D.temp*lambda) )%*% t( obj$matrices$V)
test.for.zero(solve(A3test), hold$A/rho, tol=5e-8)
Quad3<- sum( D.temp*(obj$matrices$u[obj$matrices$D>0])^2/(1+lambda*D.temp))
test.for.zero( hold$quad.form, Quad3/rho, tag="quad form")
# test determinants
N2<- length( D.temp)
det4<- -sum( log(D.temp/(1 + D.temp*lambda)) )
det1<- sum( log(eigen( hold$A/rho)$values))
test.for.zero( det1, det4, tag="det" )
# test REML Likelihood
lLikeREML.test<--1*( (N2/2)*log(2*pi) - (1/2)*(sum( log(D.temp/(1 + D.temp*lambda)) ) - N2*log(rho)) +
(1/2)*sum( lD*(obj$matrices$u)^2/(1+lD)) /(lambda*rho) )
test.for.zero( hold$REML.like, lLikeREML.test, tag="REML using matrices")
# profile likelihood
# lnProfileLike <- (-np/2 - log(2*pi)*(np/2)
# - (np/2)*log(rho.MLE) - (1/2) * lnDetCov)
# test using full REML likelihood.
nu<- 1.5
rho<- 7000
lambda<- .02
sigma2<- lambda*rho
theta<- 2.0
obj<- Krig( x,y, theta=theta,Covariance="Matern", smoothness=nu )
hold<- REML.test(x,y,rho, sigma2, theta, nu=1.5)
np<- hold$N2
rho.MLE<- c(hold$rhohat)
lnDetCov<-sum( log(eigen( hold$A/rho)$values))
l0<- REML.test(x,y,rho.MLE, rho.MLE*lambda, theta, nu=1.5)$REML.like
l1<- (-np/2 - log(2*pi)*(np/2)- (np/2)*log(rho.MLE) - (1/2) * lnDetCov)
l2<- (-1)*Krig.flplike( lambda, obj)
test.for.zero( l0,l2, tag="REML profile flplike")
test.for.zero( l1,l2, tag="REML profile flplike")
cat("all done with likelihood tests", fill=TRUE)
options( echo=TRUE)
|