File: REMLest.test.R

package info (click to toggle)
r-cran-fields 11.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,140 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 33; makefile: 2
file content (131 lines) | stat: -rw-r--r-- 4,692 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
 # fields is a package for analysis of spatial data written for
  # the R software environment .
  # Copyright (C) 2018
  # University Corporation for Atmospheric Research (UCAR)
  # Contact: Douglas Nychka, nychka@ucar.edu,
  # National Center for Atmospheric Research,
  # PO Box 3000, Boulder, CO 80307-3000
  #
  # This program is free software; you can redistribute it and/or modify
  # it under the terms of the GNU General Public License as published by
  # the Free Software Foundation; either version 2 of the License, or
  # (at your option) any later version.
  # This program is distributed in the hope that it will be useful,
  # but WITHOUT ANY WARRANTY; without even the implied warranty of
  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  # GNU General Public License for more details.



############################################################################
#      Begin tests of Matern covaraince parameter estimate
# Note that in all tests the smoothness (nu) is fixed
# and only theta (range), sill ( rho) and nugget (sigma2) are considered. 
##########################################################################
suppressMessages(library(fields))

options( echo=FALSE)
test.for.zero.flag<-1

# ozone data as a test case
data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
is.good <- !is.na( y)
x<- x[is.good,]
y<- y[is.good]
nu<- 1.5

# reduce  data set to speed calculations
x<-x[1:75,]
y<- y[1:75]

# testing REML formula as used in gcv.Krig

 loglmvn <- function(pars, nu, x, y) {
        N <- length(y)
        Tmatrix <- fields.mkpoly(x, 2)
        qr.T <- qr(Tmatrix)
        Q2 <- qr.yq2(qr.T, diag(1, N))
        ys <- t(Q2) %*% y
        N2 <- length(ys)
        lrho = pars[1]
        ltheta = pars[2]
        lsig2 = pars[3]
        d <- rdist(x, x)
        A <- exp(lrho)*(Matern(d, range = exp(ltheta), 
            smoothness = nu) + exp(lsig2)/exp(lrho) * diag(N))
        A <- t(Q2) %*% A %*% Q2
        A <- chol(A)
        w = backsolve(A, ys, transpose = TRUE)
        ycept <- (N2/2) * log(2 * pi) + sum(log(diag(A))) + (1/2) * 
            t(w) %*% w  
        
            return( ycept)
 }
 
 logProfilemvn <- function(lambda, theta, nu, x, y) {
   N <- length(y)
   Tmatrix <- fields.mkpoly(x, 2)
   qr.T <- qr(Tmatrix)
   Q2 <- qr.yq2(qr.T, diag(1, N))
   ys <- t(Q2) %*% y
   N2 <- length(ys)
      d <- rdist(x, x)
      print( dim ( d))
      print( dim (diag( 1, N) ))
   A <- (Matern(d, range = theta, 
              smoothness = nu) +  diag( 1, N)*lambda )
   A <- t(Q2) %*% A %*% Q2
   A <- chol(A)
   lnDetCov<-  sum( log(diag(A)))*2
   w = backsolve(A, ys, transpose = TRUE)
   rho.MLE<- sum( w^2)/N2
   REMLLike<- -1 * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(rho.MLE) - 
                   (1/2) * lnDetCov)
   return( REMLLike)
 }   
 
out<- Krig( x,y, Covariance="Matern", smoothness= nu, theta= 2.0, method="REML"  )
pars<- c(log( out$rho.MLE), log( 2.0), log( out$shat.MLE^2) )
 REML0<- out$lambda.est[6,5]
 REML1<- loglmvn( pars,nu, x,y)
 REML2<- logProfilemvn( out$lambda, 2.0, nu, x,y)
test.for.zero( REML0, REML1, tol=2e-4, tag="sanity check 1 for REML from Krig")
test.for.zero( REML0, REML2,  tag= "sanity check 2 for REML from Krig")

##D hold1<- MaternGLS.test( x,y, nu)
##D hold2<- MaternGLSProfile.test( x,y,nu)
##D test.for.zero( hold1$pars[1], hold2$pars[1], tol=2e-5, tag="check REML rho")
##D test.for.zero( hold1$pars[2], hold2$pars[2], tol=2e-5, tag="check REML theta")
##D test.for.zero( hold1$pars[3], hold2$pars[3], tol=5e-6, tag=" check REML sigma2")

hold3<- MaternQR.test( x,y,nu)
hold4<- MaternQRProfile.test( x,y,nu)
test.for.zero( hold3$pars[1], hold4$pars[1], tol=1e-3, tag="check REML rho")
test.for.zero( hold3$pars[2], hold4$pars[2], tol=1e-3, tag="check REML theta")
test.for.zero( hold3$pars[3], hold4$pars[3], tol=.0002, tag=" check REML sigma2")

nu<- hold3$smoothness 
out1<- Krig( x,y, Covariance="Matern", theta=  hold3$pars[2],
                      smoothness=nu, method="REML")

# evaluate Profile at full REML MLE 
lam<- hold3$pars[3]/hold3$pars[1]
l1<-Krig.flplike( lam, out1)

# evaluate Profile at full REML MLE 
out2<-  Krig( x,y, Covariance="Matern", theta= hold4$pars[2],
                  smoothness=nu, method="REML")
lam<- hold4$pars[3]/hold4$pars[1]
l2<-Krig.flplike( lam, out2)

test.for.zero( l1,l2, tag="Profile likelihoods from Krig and optim")

hold5<- MLE.Matern( x,y,nu)
test.for.zero( hold5$llike,l2, tag="Profile likelihoods from Krig and golden search")

#hold6<- spatialProcess( x,y, smoothness=nu, theta= hold5$theta.MLE, REML=TRUE)

cat("done with Matern REML estimator tests where smoothness is fixed", fill=TRUE)
options( echo=TRUE)