File: cov.test.R

package info (click to toggle)
r-cran-fields 11.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,140 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 33; makefile: 2
file content (157 lines) | stat: -rw-r--r-- 4,450 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
 # fields is a package for analysis of spatial data written for
  # the R software environment .
  # Copyright (C) 2018
  # University Corporation for Atmospheric Research (UCAR)
  # Contact: Douglas Nychka, nychka@ucar.edu,
  # National Center for Atmospheric Research,
  # PO Box 3000, Boulder, CO 80307-3000
  #
  # This program is free software; you can redistribute it and/or modify
  # it under the terms of the GNU General Public License as published by
  # the Free Software Foundation; either version 2 of the License, or
  # (at your option) any later version.
  # This program is distributed in the hope that it will be useful,
  # but WITHOUT ANY WARRANTY; without even the implied warranty of
  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  # GNU General Public License for more details.


suppressMessages(library(fields))
options( echo=FALSE)
test.for.zero.flag<- 1
data(ozone2)
y<- ozone2$y[16,]
x<- ozone2$lon.lat
#
# Omit the NAs
good<- !is.na( y)
x<- x[good,]
y<- y[good]
x1<- x[1:5,]
x2<- x[6:11,]

look<- exp(-1*rdist(x1,x2)/4)
look2<- stationary.cov( x1,x2, theta=4)
look3<- Exp.cov( x1, x2, theta=4.0)
test.for.zero( look, look2)
test.for.zero( look, look3)

set.seed(122)
C<-  rnorm( nrow(x2))
look<- exp(-1*rdist(x1,x2)/4)%*%C
look2<- stationary.cov( x1,x2, theta=4, C=C)
look3<- Exp.cov( x1, x2, theta=4.0, C=C)
test.for.zero( look, look2)
test.for.zero( look, look3)

#### check tranformation of coordinates
V<- matrix( c(2,1,0,4), 2,2)
Vi<- solve( V)
u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))

look<- exp(-1*rdist(u1,u2))
look2<- stationary.cov( x1,x2, V= V)
test.for.zero( look, look2)

look<- Wendland(rdist(u1,u2), k=3, dimension=2)
look2<- stationary.cov( x1,x2, V= V, Covariance = "Wendland",
                       k=3, dimension=2)
test.for.zero( look, look2)

### check tapering of covariances
x1<- x[1:5,]
x2<- x[2:6,]
V<- matrix( c(2,1,0,4), 2,2)
Vi<- solve( V)

u1<- x1
u2<- x2

look1a<- exp(-1*rdist(u1,u2))
look1b<-  Wendland(rdist(u1,u2),
                                      k=3, dimension=2, theta= 1)
look1<- look1a*look1b
look2<- stationary.taper.cov( x1,x2, theta=1,
               Taper.args=list( theta=1,k=3, dimension=2), verbose=FALSE)
test.for.zero( look1, as.matrix(look2))


u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))


look1a<- exp(-1*rdist(u1,u2))
look1b<-  Wendland(rdist(u1,u2),
                                      k=3, dimension=2, theta= 1.5)
look1<- look1a*look1b
look2<- stationary.taper.cov( x1,x2,V=V,
               Taper.args=list( theta=1.5,k=3, dimension=2), verbose=FALSE)
test.for.zero( look1, as.matrix(look2))


u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))


look1a<- Matern(rdist(u1,u2), smoothness=1.5)
look1b<-  Wendland(rdist(u1,u2),
                                      k=3, dimension=2, theta= 1.5)
look1<- look1a*look1b
look2<- stationary.taper.cov( x1,x2,V=V,Covariance=Matern, smoothness=1.5,
               Taper.args=list( theta=1.5,k=3, dimension=2), verbose=FALSE)
test.for.zero( look1, as.matrix(look2))


# some tests of great circle distance


stationary.taper.cov( x[1:3,],x[1:10,] , theta=200, Taper.args= 
       list(k=2,theta=300, dimension=2),
       Dist.args=list( method="greatcircle") )-> temp

# temp is now a tapered 3X10 cross covariance matrix in sparse format. 
# should be identical to
# the direct matrix product

temp2<- Exponential( rdist.earth(x[1:3,],x[1:10,]), range=200) * 
           Wendland(rdist.earth(x[1:3,],x[1:10,]), theta= 300, k=2, dimension=2)

test.for.zero(  as.matrix(temp), temp2, tol=2e-6, tag="taper with great circle")

# example of calling the taper version directly 
# Note that default covariance is exponential and default taper is 
# Wendland (k=2).

stationary.taper.cov( x[1:3,],x[1:10,] , theta=1.5, Taper.args= 
      list(k=2,theta=2.0, dimension=2) )-> temp
# temp is now a tapered 5X10 cross covariance matrix in sparse format. 
# should be identical to
# the direct matrix product

temp2<- Exp.cov( x[1:3,],x[1:10,], theta=1.5) * 
           Wendland(rdist(x[1:3,],x[1:10,]),
                      theta= 2.0, k=2, dimension=2)

test.for.zero(  as.matrix(temp), temp2, tag= "high level test of taper cov")

stationary.taper.cov( x[1:3,],x[1:10,] , range=1.5,
        Taper.args= list(k=2,theta=2.0,
                       dimension=2) )-> temp

test.for.zero(  as.matrix(temp), temp2, tag= "high level test of taper cov")

cat("end tests of V argument in covariances", fill=TRUE)