| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 
 | #
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
gcv.sreg<- function(out, lambda.grid = NA, cost = 1, 
    nstep.cv = 80, rmse = NA, offset = 0, trmin = NA, trmax = NA, 
    verbose = FALSE, tol = 1e-05,
    give.warnings=TRUE) {
    tauHat.pure.error <- out$tauHat.pure.error
    pure.ss <- out$pure.ss
    nt <- 2
    np <- out$np
    N <- out$N
    out$cost <- cost
    out$offset <- offset
    # find good end points for lambda coarse grid.
    if (is.na(trmin)) 
        trmin <- 2.05
    if (is.na(trmax)) 
        trmax <- out$np * 0.95
    if (is.na(lambda.grid[1])) {
        l2 <- sreg.df.to.lambda(trmax, out$xM, out$weightsM)
        l1 <- sreg.df.to.lambda(trmin, out$xM, out$weightsM)
        lambda.grid <- exp(seq(log(l2), log(l1), , nstep.cv))
    }
    if (verbose) {
        cat("endpoints of coarse lamdba grid", fill = TRUE)
        cat(l1, l2, fill = TRUE)
    }
    # build up table of coarse grid serach results for lambda
    # in the matrix gcv.grid
    nl <- length(lambda.grid)
    V <- V.model <- V.one <- trA <- MSE <- RSS.model <- rep(NA, 
        nl)
    #   loop through lambda's and compute various quantities related to
    #   lambda and the fitted spline.
    for (k in 1:nl) {
        temp <- sreg.fit(lambda.grid[k], out, verbose = verbose)
        RSS.model[k] <- temp$rss
        trA[k] <- temp$trace
        V[k] <- temp$gcv
        V.one[k] <- temp$gcv.one
        V.model[k] <- temp$gcv.model
    }
    # adjustments to columns of gcv.grid
    RSS <- RSS.model + pure.ss
    tauHat <- sqrt(RSS/(N - trA))
    gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, tauHat)
    dimnames(gcv.grid) <- list(NULL, c("lambda", "trA", "GCV", 
        "GCV.one", "GCV.model", "tauHat"))
        gcv.grid<- as.data.frame( gcv.grid)
    if (verbose) {
        cat("Results of coarse grid search", fill = TRUE)
        print(gcv.grid)
    }
    lambda.est <- matrix(NA, ncol = 5, nrow = 5,
           dimnames = list(
           c("GCV","GCV.model", "GCV.one", "RMSE", "pure error"),
           c("lambda","trA", "GCV", "tauHat", "converge")))
    # now do various refinements for different flavors of finding
    # a good value for lambda the smoothing parameter
    ##### traditional leave-one-out
    IMIN<- rep( NA, 5)
    IMIN[1]<- which.min(    gcv.grid$GCV ) 
    IMIN[2]<- ifelse( is.na(tauHat.pure.error), NA,
                 which.min(gcv.grid$GCV.model) )
    IMIN[3]<- which.min(    gcv.grid$GCV.one)
    if( is.na( rmse)){
    	IMIN[4] <- NA
    }
    else{
       rangeShat<-  range( gcv.grid$tauHat) 
       IUpcross<- max( (1:nl)[gcv.grid$tauHat< rmse] )
      IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse),
                                        IUpcross, NA)
    }
    IMIN[5]<- ifelse( is.na(tauHat.pure.error), NA,
                       which.min(abs(gcv.grid$tauHat-tauHat.pure.error)) ) 
    # NOTE IMIN indexes from smallest lambda to largest lambda in grid.        
    warningTable<- data.frame(
                    IMIN, IMIN == nl, IMIN==1,
                    gcv.grid$lambda[IMIN],
                    gcv.grid$trA[IMIN],
     row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error") ) 
    warning<- (warningTable[,2]|warningTable[,3])&
                      (!is.na(warningTable[,1]))
    indRefine<- (!warningTable[,2]) & (!warningTable[,3]) & 
                        (!is.na(warningTable[,1]))   
    warningTable<- cbind( warning, indRefine, warningTable ) 
    names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint",
                             "lambda","effdf")
     if( verbose){
     	print(warningTable)
     }
   # fill in grid search estimates
      for( k in 1:5){
      	if( !is.na(IMIN[k])){
      		lambda.est[k,1]<-  gcv.grid$lambda[IMIN[k]]
      	}
      }                              
    # now optimze the search producing refined optima
    #
    # now step through the many different ways to find lambda
    # This is the key to these choices:
    #  1- the usual GCV proposed by Craven/Wahba
    #  2- GCV where data fitting is collapsed to the mean for
    #     each location and each location is omitted 
    #  3- True leave-one-out even with replicated observations
    #  4- Match estimate of tau to external value supplied (RMSE)
    #  5- Match estimate of tau from the estimate based the 
    #     pure error sum of squares obtained by the observations
    #     replicated at the same locations
    #test<- sreg.fit(.1, out)
    #print( test)
     if(indRefine[1]){    
        starts <- lambda.grid[IMIN[1] + c(-1,0,1)]
        outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=sreg.fgcv, f.extra = out, tol = tol)               
        lambda.est[1,1]<-  outGs$x
        lambda.est[1,5]<-  outGs$iter
        }
    if( indRefine[2]) {
        starts <- lambda.grid[IMIN[2] + c(-1,0,1)]
        outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=sreg.fgcv.model, f.extra = out, tol = tol)               
        lambda.est[2,1]<-  outGs$x 
        lambda.est[2,5]<-  outGs$iter     
    }
    if( indRefine[3]) {
        starts <- lambda.grid[IMIN[3] + c(-1,0,1)]
        outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=sreg.fgcv.one, f.extra = out, tol = tol) 
         lambda.est[3, 1] <-outGs$x 
          lambda.est[3,5]<-  outGs$iter                 
        }                               
     if (  indRefine[4] ) {
            guess<- gcv.grid$lambda[IMIN[4]]
            lambda.rmse <- find.upcross(sreg.fs2hat, out,
                          upcross.level = rmse^2, 
                          guess = guess, tol = tol * rmse^2)
            lambda.est[4, 1] <- lambda.rmse
        } 
         if (  indRefine[5] ) { 	    
            guess <- gcv.grid$lambda[IMIN[5]]     
            lambda.pure.error <- find.upcross(sreg.fs2hat, out, 
                    upcross.level = tauHat.pure.error^2, guess = guess, 
                    tol = tol * tauHat.pure.error^2)
            lambda.est[5, 1] <- lambda.pure.error
    }
   if (verbose) {
        cat("All forms of estimated lambdas so far", fill = TRUE)
        print(lambda.est)
    }
    for (k in 1:5) {
        lam <- lambda.est[k, 1]
        if (!is.na(lam)) {
            temp <- sreg.fit(lam, out)
            lambda.est[k, 2] <- temp$trace
            if ((k == 1) | (k > 3)) {
                lambda.est[k, 3] <- temp$gcv
            }
            if (k == 2) {
                lambda.est[k, 3] <- temp$gcv.model
            }
            if (k == 3) {
                lambda.est[k, 3] <- temp$gcv.one
            }
            lambda.est[k, 4] <- temp$tauHat
        }
    }
    if( give.warnings & any(warningTable$Warning)){
    	cat("Methods at endpoints of grid search:", fill=TRUE)
    	print(warningTable[warningTable$Warning,])
    }
    list(gcv.grid = gcv.grid, lambda.est = lambda.est,
     warningTable=warningTable)
}
 |