1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
Krig.check.xY <- function(x, Y, Z, weights, na.rm,
verbose = FALSE) {
#
# check for missing values in Y or X.
#
# save logical indicating where there are NA's
# and check for NA's
#
ind <- is.na(Y)
if (any(ind) & !na.rm) {
stop("Need to remove missing values or use: na.rm=TRUE in the call")
}
#
# coerce x to be a matrix
x <- as.matrix(x)
#
# coerce Y to be a vector
#
Y <- as.matrix(Y)
if (ncol(Y) != 1) {
stop("Krig can not handle matrix Y data. See mKrig.")
}
#
#default weights ( reciprocal variance of errors).
#
if (is.null(weights))
weights <- rep(1, length(Y))
#
# check that dimensions agree
#
if (length(Y) != nrow(x)) {
stop(" length of y and number of rows of x differ")
}
if (length(Y) != length(weights)) {
stop(" length of y and weights differ")
}
# if Z is not NULL coerce to be a matrix
# and check # of rows
if (verbose) {
print(Z)
}
if (!is.null(Z)) {
if (!is.matrix(Z)) {
Z <- matrix(c(Z), ncol = 1)
}
if (length(Y) != nrow(Z)) {
stop(" length of y and number of rows of Z differ")
}
}
# if NAs can be removed then remove them and warn the user
if (na.rm) {
ind <- is.na(Y)
if(all(ind)){
stop("Oops! All Y values are missing!")
}
if (any(ind)) {
Y <- Y[!ind]
x <- as.matrix(x[!ind, ])
if (!is.null(Z)) {
Z <- Z[!ind, ]
}
weights <- weights[!ind]
}
}
#
# check for NA's in x matrix -- there should not be any !
if (any(c(is.na(x)))) {
stop(" NA's in x matrix")
}
#
# check for NA's in Z matrix
if (!is.null(Z)) {
if (any(c(is.na(Z)))) {
stop(" NA's in Z matrix")
}
}
#
# verbose block
if (verbose) {
cat("Y:", fill = TRUE)
print(Y)
cat("x:", fill = TRUE)
print(x)
cat("weights:", fill = TRUE)
cat(weights, fill = TRUE)
}
#
# save x, weights and Y w/o NAs
N <- length(Y)
return(list(N = N, y = Y, x = x, weights = weights, Z = Z,
NA.ind = ind))
}
"Krig.coef" <- function(out, lambda = out$lambda,
y = NULL, yM = NULL, verbose = FALSE) {
#
# NOTE default value of lambda used from Krig object.
#
# Determine whether to collapse onto means of replicates ( using y)
# if the data has been passed use as the replicate means (yM) use that.
# If both y and YM are null then just use out$yM
# For readability of this function, all this tortured logic happens in
# Krig.ynew.
#
out2 <- Krig.ynew(out, y, yM)
temp.yM <- out2$yM
nt <- out$nt
np <- out$np
ndata <- ncol(temp.yM)
u <- NA
call.name <- out$cov.function.name
if (verbose) {
cat("dimension of yM in Krig.coef", fill = TRUE)
print(dim(temp.yM))
}
#
# case when knots= unqiue x's
# any lambda
#
if (out$decomp == "WBW") {
# pad u with zeroes that corresond to null space basis functions
# this makes it compatible with the Demmler Reisch decomposition.
# from an older version of this code
u <- rbind(matrix(0, nrow = out$nt, ncol = ndata), t(out$matrices$V) %*%
qr.q2ty(out$matrices$qr.T, out$W2 %d*% temp.yM))
#
#old code beta <- out$matrices$G %*% ((1/(1 + lambda * out$matrices$D))%d*%u)
#
ind <- (nt + 1):np
D2 <- out$matrices$D[ind]
#
# note use of efficient diagonal multiply in next line
temp2 <- (D2/(1 + lambda * D2)) %d*% u[ind, ]
beta2 <- out$matrices$V %*% temp2
temp.c <- rbind(matrix(0, nrow = nt, ncol = ndata), beta2)
temp.c <- qr.qy(out$matrices$qr.T, temp.c)
temp.c <- out$W2 %d*% temp.c
temp <- temp.yM - do.call(call.name, c(out$args, list(x1 = out$knots,
x2 = out$knots, C = temp.c)))
temp <- out$W2 %d*% temp
temp.d <- qr.coef(out$matrices$qr.T, temp)
}
if (out$decomp == "cholesky") {
if (lambda != out$matrices$lambda) {
stop("New lambda can not be used with cholesky decomposition")
}
Tmatrix <- do.call(out$null.function.name, c(out$null.args,
list(x = out$knots, Z = out$ZM)))
temp.d <- qr.coef(out$matrices$qr.VT, forwardsolve(out$matrices$Mc,
transpose = TRUE, temp.yM, upper.tri = TRUE))
temp.c <- forwardsolve(out$matrices$Mc, transpose = TRUE,
temp.yM - Tmatrix %*% temp.d, upper.tri = TRUE)
temp.c <- backsolve(out$matrices$Mc, temp.c)
}
return(list(c = temp.c, d = temp.d, tauHat.rep = out2$tauHat.rep,
tauHat.pure.error = out2$tauHat.pure.error, pure.ss = out2$pure.ss))
}
# brute force way to find the smoother matrix:
# yhat = A(lambda) y
# trace of A(lambda) is the effective degrees of freedom
Krig.Amatrix <- function(object, x0 = object$x, lambda = NULL,
eval.correlation.model = FALSE, ...) {
if (is.null(lambda)) {
lambda <- object$lambda
}
M <- nrow(object$xM)
N <- nrow(x0)
# create output matrix
out <- matrix(NA, N, M)
#
# loop through unique data locations predicting response
# using unit vector
# NOTE that the y vector has already been collapsed onto means.
#
for (k in 1:M) {
ytemp <- rep(0, M)
ytemp[k] <- 1
out[, k] <- predict(object, x = x0, yM = ytemp, lambda = lambda,
eval.correlation.model = eval.correlation.model,
...)
}
return(out)
}
"Krig.df.to.lambda" <- function(df, D, guess = 1,
tol = 1e-05) {
if (is.list(D)) {
D <- D$matrices$D
}
if (is.na(df))
return(NA)
if (df < sum(D == 0)) {
warning("df too small to match with a lambda value")
return(NA)
}
if (df > length(D)) {
warning(" df too large to match a lambda value")
return(NA)
}
l1 <- guess
for (k in 1:25) {
tr <- sum(1/(1 + l1 * D))
if (tr <= df)
break
l1 <- l1 * 4
}
l2 <- guess
for (k in 1:25) {
tr <- sum(1/(1 + l2 * D))
if (tr >= df)
break
l2 <- l2/4
}
info <- list(D = D, df = df, N = length(D))
out <- bisection.search(log(l1), log(l2), Krig.fdf, tol = tol,
f.extra = info)$x
+exp(out)
}
"Krig.engine.default" <- function(out, verbose = FALSE) {
Tmatrix <- do.call(out$null.function.name, c(out$null.args,
list(x = out$xM, Z = out$ZM)))
if (verbose) {
cat(" Model Matrix: spatial drift and Z", fill = TRUE)
print(Tmatrix)
}
# Tmatrix premultiplied by sqrt of weights
Tmatrix <- out$W2 %d*% Tmatrix
qr.T <- qr(Tmatrix)
if( qr.T$rank < ncol( Tmatrix)){
stop("Regression matrix for fixed part of model is colinear")}
#
#verbose block
if (verbose) {
cat("first 5 rows of qr.T$qr", fill = TRUE)
print(qr.T$qr[1:5, ])
}
#
# find Q_2 K Q_2^T where K is the covariance matrix at the knot points
#
tempM <- t(out$W2 %d*% do.call(out$cov.function.name, c(out$args,
list(x1 = out$knots, x2 = out$knots))))
tempM <- out$W2 %d*% tempM
tempM <- qr.yq2(qr.T, tempM)
tempM <- qr.q2ty(qr.T, tempM)
np <- nrow(out$knots)
nt <- (qr.T$rank)
if (verbose) {
cat("np, nt", np, nt, fill = TRUE)
}
#
# Full set of decompositions for
# estimator for nonzero lambda
tempM <- eigen(tempM, symmetric = TRUE)
D <- c(rep(0, nt), 1/tempM$values)
#
# verbose block
if (verbose) {
cat("eigen values:", fill = TRUE)
print(D)
}
#
# Find the transformed data vector used to
# evaluate the solution, GCV, REML at different lambdas
#
u <- c(rep(0, nt), t(tempM$vectors) %*% qr.q2ty(qr.T, c(out$W2 %d*%
out$yM)))
if (verbose) {
cat("u vector:", fill = TRUE)
print(u)
}
#
#
return(list(D = D, qr.T = qr.T, decomp = "WBW", V = tempM$vectors,
u = u, nt = nt, np = np))
}
"Krig.engine.fixed" <- function(out, verbose = FALSE,
lambda = NA) {
if (is.na(lambda))
lambda <- out$lambda
call.name <- out$cov.function.name
Tmatrix <- do.call(out$null.function.name, c(out$null.args,
list(x = out$knots, Z = out$ZM)))
if (verbose) {
cat("Tmatrix:", fill = TRUE)
print(Tmatrix)
}
np <- nrow(out$knots)
nt <- ncol(Tmatrix)
# form K
tempM <- do.call(call.name, c(out$args, list(x1 = out$knots,
x2 = out$knots)))
# form M
diag(tempM) <- (lambda/out$weightsM) + diag(tempM)
#
# find cholesky factor
# tempM = t(Mc)%*% Mc
# V= Mc^{-T}
# call cholesky but also add in the args supplied in Krig object.
Mc <- do.call("chol", c(list(x = tempM), out$chol.args))
VT <- forwardsolve(Mc, x = Tmatrix, transpose = TRUE,
upper.tri = TRUE)
qr.VT <- qr(VT)
# find GLS covariance matrix of null space parameters.
Rinv <- solve(qr.R(qr.VT))
Omega <- Rinv %*% t(Rinv)
#
# now do generalized least squares for d
# and then find c.
beta <- qr.coef(qr.VT, forwardsolve(Mc, transpose = TRUE,
out$yM, upper.tri = TRUE))
if (verbose) {
cat("beta fixed coefficients", fill=TRUE)
print(beta)
}
c.coef <- forwardsolve(Mc, transpose = TRUE, out$yM -
Tmatrix %*% beta, upper.tri = TRUE)
c.coef <- backsolve(Mc, c.coef)
# return all the goodies, include lambda as a check because
# results are meaningless for other values of lambda
return(list(qr.VT = qr.VT, d = c(beta), c = c(c.coef),
Mc = Mc, decomp = "cholesky", nt = nt, np = np, lambda.fixed = lambda,
Omega = Omega))
}
"Krig.fdf" <- function(llam, info) {
sum(1/(1 + exp(llam) * info$D)) - info$df
}
"Krig.fgcv" <- function(lam, obj) {
#
# GCV that is leave-one-group out
#
lD <- obj$matrices$D * lam
RSS <- sum(((obj$matrices$u * lD)/(1 + lD))^2)
MSE <- RSS/length(lD)
if ((obj$N - length(lD)) > 0) {
MSE <- MSE + obj$pure.ss/(obj$N - length(lD))
}
trA <- sum(1/(1 + lD))
den <- (1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/length(lD))
# If the denominator is negative then flag this as a bogus case
# by making the GCV function 'infinity'
#
ifelse(den > 0, MSE/den^2, 1e20)
}
"Krig.fgcv.model" <- function(lam, obj) {
lD <- obj$matrices$D * lam
MSE <- sum(((obj$matrices$u * lD)/(1 + lD))^2)/length(lD)
trA <- sum(1/(1 + lD))
den <- (1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/length(lD))
ifelse(den > 0, obj$tauHat.pure.error^2 + MSE/den^2, 1e20)
}
"Krig.fgcv.one" <- function(lam, obj) {
lD <- obj$matrices$D * lam
RSS <- obj$pure.ss + sum(((obj$matrices$u * lD)/(1 + lD))^2)
trA <- sum(1/(1 + lD))
den <- 1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/obj$N
# If the denominator is negative then flag this as a bogus case
# by making the GCV function 'infinity'
#
ifelse(den > 0, (RSS/obj$N)/den^2, 1e+20)
}
"Krig.flplike" <- function(lambda, obj) {
# - log profile likelihood for lambda
# See section 3.4 from Nychka Spatial Processes as Smoothers paper.
# for equation and derivation
D2 <- obj$matrices$D[obj$matrices$D > 0]
u2 <- obj$matrices$u[obj$matrices$D > 0]
lD <- D2 * lambda
N2 <- length(D2)
# MLE estimate of sigma for fixed lambda
sigma2.MLE <- (sum((D2 * (u2)^2)/(1 + lD)))/N2
#
# ln determinant of K + lambda*WI
lnDetCov <- -sum(log(D2/(1 + lD)))
logREMLLikelihood<- -1 * (-N2/2 - log(2 * pi) * (N2/2) -
(N2/2) * log(sigma2.MLE) -
(1/2) * lnDetCov)
return(
logREMLLikelihood
)
}
"Krig.fs2hat" <- function(lam, obj) {
lD <- obj$matrices$D * lam
RSS <- obj$pure.ss + sum(((obj$matrices$u * lD)/(1 + lD))^2)
den <- obj$N - (sum(1/(1 + lD)) + obj$offset)
if (den < 0) {
return(NA)
}
else {
RSS/(den)
}
}
"Krig.ftrace" <- function(lam, D) {
sum(1/(1 + lam * D))
}
"Krig.make.W" <- function(out, verbose = FALSE) {
if (verbose) {
cat("W", fill = TRUE)
print(out$W)
}
if (out$nondiag.W) {
#
# create W from scratch or grab it from passed object
if (is.null(out$W)) {
if (verbose) {
print(out$wght.function.name)
}
W <- do.call(out$wght.function.name, c(list(x = out$xM),
out$wght.args))
# adjust W based on diagonal weight terms
#
W <- sqrt(out$weightsM) * t(sqrt(out$weightsM) *
W)
}
else {
W <- out$W
}
#
# symmetric square root
temp <- eigen(W, symmetric = TRUE)
W2 <- temp$vectors %*% diag(sqrt(temp$values)) %*% t(temp$vectors)
return(list(W = W, W2 = W2))
}
else {
#
# These are created only for use with default method to stay
# consistent with nondiagonal elements.
if (out$fixed.model) {
return(list(W = NULL, W2 = NULL))
}
else {
return(list(W = out$weightsM, W2 = sqrt(out$weightsM)))
}
}
}
"Krig.make.Wi" <- function(out, verbose = FALSE) {
#
# If a weight matrix has been passed use it.
#
# Note that in either case the weight matrix assumes that
# replicate observations have been collapses to the means.
#
if (out$nondiag.W) {
temp <- eigen(out$W, symmetric = TRUE)
Wi <- temp$vectors %*% diag(1/(temp$values)) %*% t(temp$vectors)
W2i <- temp$vectors %*% diag(1/sqrt(temp$values)) %*%
t(temp$vectors)
return(list(Wi = Wi, W2i = W2i))
}
else {
#
# These are created only for use with default method to stay
# consistent with nondiagonal elements.
return(list(Wi = 1/out$weightsM, W2i = 1/sqrt(out$weightsM)))
}
}
"Krig.make.u" <- function(out, y = NULL, yM = NULL,
verbose = FALSE) {
#
# Determine whether to collapse onto means of replicates ( using y)
# if the data has been passed use as the replicate means (yM) use that.
# If both y and YM are null then just use out$yM
# For readability of this function, all this tortured logic happens in
# Krig.ynew.
#
out2 <- Krig.ynew(out, y, yM)
temp.yM <- out2$yM
nt <- out$nt
np <- out$np
ndata <- ncol(temp.yM)
u <- NA
call.name <- out$cov.function.name
if (verbose) {
cat("dimension of yM in Krig.coef", fill = TRUE)
print(dim(temp.yM))
}
#
# case when knots= unqiue x's
# any lambda
#
u <- rbind(matrix(0, nrow = out$nt, ncol = ndata), t(out$matrices$V) %*%
qr.q2ty(out$matrices$qr.T, out$W2 %d*% temp.yM))
return(list(u = u, tauHat.rep = out2$tauHat.rep, tauHat.pure.error = out2$tauHat.pure.error,
pure.ss = out2$pure.ss))
}
Krig.null.function <- function(x, Z = NULL, drop.Z = FALSE,
m) {
# default function to create matrix for fixed part of model
# x, Z, and drop.Z are required
# Note that the degree of the polynomial is by convention (m-1)
# returned matrix must have the columns from Z last!
#
if (is.null(Z) | drop.Z) {
return(fields.mkpoly(x, m = m))
}
else {
return(cbind(fields.mkpoly(x, m = m), Z))
}
}
Krig.parameters <- function(obj, mle.calc = obj$mle.calc) {
# if nondiag W is supplied then use it.
# otherwise assume a diagonal set of weights.
#
# NOTE: calculation of tauHat involves full set of obs
# not those colllapsed to the mean.
if (obj$nondiag.W) {
tauHat.GCV <- sqrt(sum((obj$W2 %d*% obj$residuals)^2)/(length(obj$y) -
obj$eff.df))
}
else {
tauHat.GCV <- sqrt(sum((obj$weights * obj$residuals^2)/(length(obj$y) -
obj$eff.df)))
}
if (mle.calc) {
sigma.MLE <- sum(c(obj$c) * c(obj$yM))/obj$N
# set sigma estimate to zero if negtive. Typically this
# is an issue of machine precision and very small negative value.
sigma.MLE <- ifelse(sigma.MLE < 0, 0, sigma.MLE)
# commented out code for debugging ...
# if( sigma.MLE< 0) {
# stop('problems computing sigma.MLE')}
# commented out is the REML estimate -- lose null space df because of
# the restiction to orthogonal subspace of T.
# sigmahat<- sigma.MLE <- sum(obj$c * obj$yM)/(obj$N - obj$nt)
# .
sigmahat <- sigma.MLE
tauHat.MLE <- sqrt(sigma.MLE * obj$lambda)
}
else {
sigmahat <- sigma.MLE <- tauHat.MLE <- NA
}
list(tauHat.GCV = tauHat.GCV, sigma.MLE = sigma.MLE, tauHat.MLE = tauHat.MLE,
sigmahat = sigmahat)
}
"Krig.replicates" <- function(out=NULL, x,y, Z=NULL, weights=rep( 1, length(y)),
digits=8,
verbose = FALSE) {
if( is.null(out)){
out<- list( x=x, y=y, N= length(y), Z=Z, weights=weights)
}
rep.info <- cat.matrix(out$x, digits=digits)
if (verbose) {
cat("replication info", fill = TRUE)
print(rep.info)
}
# If no replicates are found then reset output list to reflect this condition
uniquerows <- !duplicated(rep.info)
if (sum(uniquerows) == out$N) {
tauHat.rep <- NA
tauHat.pure.error <- NA
pure.ss <- 0
# coerce 'y' data vector as a single column matrix
yM <- as.matrix(out$y)
weightsM <- out$weights
xM <- as.matrix(out$x[uniquerows, ])
# coerce ZM to matrix
if (!is.null(out$Z)) {
ZM <- as.matrix(out$Z)
}
else {
ZM <- NULL
}
}
# collapse over spatial replicates
else {
rep.info.aov <- fast.1way(rep.info, out$y, out$weights)
tauHat.pure.error <- sqrt(rep.info.aov$MSE)
tauHat.rep <- tauHat.pure.error
# copy replicate means as a single column matrix
yM <- as.matrix(rep.info.aov$means)
weightsM <- rep.info.aov$w.means
xM <- as.matrix(out$x[uniquerows, ])
# choose some Z's for replicate group means
if (!is.null(out$Z)) {
ZM <- as.matrix(out$Z[uniquerows, ])
}
else {
ZM <- NULL
}
pure.ss <- rep.info.aov$SSE
if (verbose)
print(rep.info.aov)
}
return(list(yM = yM, xM = xM, ZM = ZM, weightsM = weightsM,
uniquerows = uniquerows, tauHat.rep = tauHat.rep, tauHat.pure.error = tauHat.pure.error,
pure.ss = pure.ss, rep.info = rep.info))
}
Krig.transform.xY <- function(obj, knots=NA, verbose = FALSE) {
# find all replcates and collapse to unique locations and mean response
# and pooled variances and weights.
out <- Krig.replicates(obj, verbose = verbose)
if (verbose) {
cat("yM from Krig.transform.xY", fill = TRUE)
print(out$yM)
}
#
# save information about knots.
out$knots <- out$xM
out$mle.calc <- TRUE
out$knot.model <- FALSE
#
# scale x, knot locations and save transformation info
#
out$xM <- transformx(out$xM, obj$scale.type, obj$x.center,
obj$x.scale)
out$transform <- attributes(out$xM)
out$knots <- scale(out$knots, center = out$transform$x.center,
scale = out$transform$x.scale)
#
#
#verbose block
#
if (verbose) {
cat("transform", fill = TRUE)
print(out$transform)
}
if (verbose) {
cat("knots in transformed scale", fill = TRUE)
print(knots)
}
return(out)
}
"Krig.updateY" <- function(out, Y, verbose = FALSE,
yM = NA) {
#
#
if (is.na(yM[1])) {
out2 <- Krig.ynew(out, Y)
}
else {
out2 <- list(yM = yM, tauHat.rep = NA, tauHat.pure.error = NA,
pure.ss = NA)
}
if (verbose) {
print(out2)
}
#
# Note how matrices are grabbed from the Krig object
#
if (verbose){
cat("Type of decomposition", out$decomp, fill = TRUE)
}
#### decomposition of Q2TKQ2
u <- c(rep(0, out$nt), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T,
out$W2 %d*% out2$yM))
if (verbose)
cat("u", u, fill = TRUE)
#
# pure error in this case from 1way ANOVA
#
if (verbose) {
cat("pure.ss", fill = TRUE)
print(out2$pure.ss)
}
out2$u <- u
out2
}
Krig.which.lambda <- function(out) {
#
# determine the method for finding lambda
# Note order
# default is to do 'gcv/REML'
out2 <- list()
# copy all all parameters to out2 just to make this
# easier to read.
out2$method <- out$method
out2$lambda.est <- NA
out2$lambda <- out$lambda
out2$eff.df <- out$eff.df
out2$sigma <- out$sigma
out2$tau2 <- out$tau2
if (!is.na(out2$lambda) | !is.na(out2$eff.df)) {
#
# this indicates lambda has been supplied and leads to
# the cholesky type computational approaches
# -- but only if GCV is FALSE
#
out2$method <- "user"
}
out2$GCV <- out$GCV
if (!is.na(out2$eff.df)) {
#
# this indicates df has been supplied and needs
# GCV to be true to compute the lambda
# that matches the df
#
out2$GCV <- TRUE
}
if (!is.na(out2$sigma) & !is.na(out2$tau2)) {
out2$method <- "user"
out2$lambda <- out2$tau2/out2$sigma
}
#
# NOTE: method='user' means that a value of lambda has been supplied
# and so GCV etc to determine lambda is not needed.
# gcv TRUE means that the decompositions will be done to
# evaluate the estimate at arbitrary lambda (and also be
# able to compute the effective degrees of freedom).
#
# The fixed lambda calculations are very efficient but
# do not make it feasible for GCV/REML or effective degrees of
# freedom calculations.
#
out2$fixed.model <- (out2$method == "user") & (!out2$GCV)
#
return(out2)
}
"Krig.ynew" <- function(out, y = NULL, yM = NULL) {
#
# calculates the collapsed y (weighted) mean vector based on the
# X matrix and weights from the out object.
# or just passes through the collapsed mean data if passed.
#
#
# If there are no replicated obs. then return the full vector
# pure error ss is zero
#
tauHat.rep <- NA
tauHat.pure.error <- NA
pure.ss <- 0
# if no y's are given then it is assumed that one should use the
# yM from the original data used to create the Krig object
if (is.null(yM) & is.null(y)) {
yM <- out$yM
}
#
# case when yM is passed no calculations are needed
#
if (!is.null(yM)) {
return(list(yM = as.matrix(yM), tauHat.rep = NA, tauHat.pure.error = NA,
pure.ss = 0))
}
#
# no reps case
#
if (length(unique(out$rep.info)) == out$N) {
return(list(yM = as.matrix(y), tauHat.rep = NA, tauHat.pure.error = NA,
pure.ss = 0))
}
#
# check that y is the right length
#
if (length(y) != out$N) {
stop(" the new y vector is the wrong length!")
}
#
# case when full y data is passed and replicate means need to be found
#
if (length(unique(out$rep.info)) < out$N) {
#
# calculate means by pooling Replicated observations but use the
# the right weighting.
#
rep.info.aov <- fast.1way(out$rep.info, y, out$weights)[c("means",
"MSE", "SSE")]
tauHat.pure.error <- sqrt(rep.info.aov$MSE)
tauHat.rep <- tauHat.pure.error
return(list(yM = rep.info.aov$means, tauHat.rep = tauHat.rep,
tauHat.pure.error = tauHat.pure.error, pure.ss = rep.info.aov$SSE))
}
}
|