File: KrigFindLambda.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (235 lines) | stat: -rw-r--r-- 9,675 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"KrigFindLambda" <- function(out, lambda.grid = NA, cost = 1, 
    nstep.cv = 200, rmse = NA, verbose = FALSE, tol = 1e-05, 
    offset = 0, y = NULL, give.warnings = TRUE) {
    nt <- out$nt
    np <- out$np
    N <- out$N
    D <- out$matrices$D
    # Yet another monster function called by Krig
    #    but there just many simple steps ...
    #
    # if a y data vector is not supplied then
    # use the one in the Krig object
    if (is.null(y)) {
        u <- out$matrices$u
        tauHat.pure.error <- out$tauHat.pure.error
        pure.ss <- out$pure.ss
    }
    else {
        #with new data need to update some statistics.
        out2 <- Krig.make.u(out, y = y)
        u <- out2$u
        tauHat.pure.error <- out2$tauHat.pure.error
        pure.ss <- out2$pure.ss
    }
    if (verbose) {
        cat("u used:", fill = TRUE)
        print(u)
    }
    #
    # generate a reasonable grid of lambda based on equally spaced
    # effective degrees of freedom
    if (is.na(lambda.grid[1])) {
        temp.df <- seq(nt, (np - offset) * 0.95, , nstep.cv)
        temp.df[1] <- temp.df[1] + 0.001
        for (k in 1:nstep.cv) {
            lambda.grid[k] <- Krig.df.to.lambda(temp.df[k], D)
        }
    }
    # make sure that the grid is in sorted order
    lambda.grid <- sort(lambda.grid)
    nl <- length(lambda.grid)
    nd <- length(D)
    V <- V.model <- V.one <- lplike <- trA <- tauHat <- rep(NA, 
        nl)
    Dl <- rep(NA, nd)
    #
    # this is small little list used to pass information to the
    # objective functions
    info <- list(matrices = list(D = D, u = u), N = N, nt = nt, 
        cost = cost, pure.ss = pure.ss, tauHat.pure.error = tauHat.pure.error, 
        offset = offset)
    #
    # loop over lambda values for the grid search
    for (k in 1:nl) {
        #
        # all the wonderful things calculated for each lambda
        # note the use of the info list.
        V[k]       <-   Krig.fgcv(lambda.grid[k], info)
        V.one[k]   <-   Krig.fgcv.one(lambda.grid[k], info)
        V.model[k] <-   Krig.fgcv.model(lambda.grid[k], info)
        lplike[k] <-    Krig.flplike(lambda.grid[k], info)
        tauHat[k] <- sqrt(Krig.fs2hat(lambda.grid[k], info))
        trA[k] <-       Krig.ftrace(lambda.grid[k], D)
    }
    #
    # reformat  as a matrix with all these values.
    gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, tauHat, 
        lplike)
    gcv.grid <- as.data.frame(gcv.grid)
    names(gcv.grid) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", 
        "tauHat", "-lnLike Prof")
    # find minima over grid ifelse used to avoid 0 length vector from which.min
    IMIN<- rep( NA, 6)
    IMIN[1]<- which.min(    gcv.grid$GCV ) 
    IMIN[2]<- ifelse( is.na(tauHat.pure.error), NA,
                 which.min(gcv.grid$GCV.model) )
    IMIN[3]<- which.min(    gcv.grid$GCV.one)
    if( is.na( rmse)){
    	IMIN[4] <- NA
    }
    else{
       rangeShat<-  range( gcv.grid$tauHat) 
       IUpcross<- max( (1:nl)[gcv.grid$tauHat< rmse] )
      IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse),
                                        IUpcross, NA)
    }
    IMIN[5]<- ifelse( is.na(tauHat.pure.error), NA,
                       which.min(abs(gcv.grid$tauHat-tauHat.pure.error)) )
    IMIN[6]<- which.min( gcv.grid[["-lnLike Prof"]])  
    # NOTE IMIN indexes from smallest lambda to largest lambda in grid.        
    warningTable<- data.frame(
                    IMIN, IMIN == nl, IMIN==1,
                    gcv.grid$lambda[IMIN],
                    gcv.grid$trA[IMIN],
     row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error", "REML")
                     ) 
    warning<- (warningTable[,2]|warningTable[,3])&
                      (!is.na(warningTable[,1]))
    indRefine<- (!warningTable[,2]) & (!warningTable[,3]) & 
                        (!is.na(warningTable[,1]))   
    warningTable<- cbind( warning, indRefine, warningTable ) 
    names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint",
                             "lambda","effdf")                                    
    # now optimze the search producing refined optima
    if (verbose) 
        print(gcv.grid)
    # setup output matrix for refined values
    lambda.est <- matrix(NA, ncol = 6, nrow = 6, dimnames = list(
         c("GCV", "GCV.model", "GCV.one", "RMSE", "pure error", "REML"), 
         c("lambda", "trA", "GCV", "tauHat","-lnLike Prof" , "converge")))
    # fill in grid search estimates
      for( k in 1:6){
      	if( !is.na(IMIN[k])){
      		lambda.est[k,1]<-  gcv.grid$lambda[IMIN[k]]
      	}
      }   
    #
    # now step through the many different ways to find lambda
    # This is the key to these choices:
    #  1- the usual GCV proposed by Craven/Wahba
    #  2- GCV where data fitting is collapsed to the mean for
    #     each location and each location is omitted 
    #  3- True leave-one-out even with replicated observations
    #  4- Match estimate of tau to external value supplied (RMSE)
    #  5- Match estimate of tau from the estimate based the 
    #     pure error sum of squares obtained by the observations
    #     replicated at the same locations
    #  6- Maxmize the restricted maxmimum likelihood (REML)
    #   standard GCV w/o replicates  
    if( verbose){
    	print( warningTable)
    }  
    if(indRefine[1]){    
        starts <- lambda.grid[IMIN[1] + c(-1,0,1)]
        out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=Krig.fgcv, f.extra = info, tol = tol)               
        lambda.est[1,1]<-  out$x
        lambda.est[1,6]<-  out$iter
        }
    if( indRefine[2]) {
        starts <- lambda.grid[IMIN[2] + c(-1,0,1)]
        out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=Krig.fgcv.model, f.extra = info, tol = tol)               
        lambda.est[2,1]<-  out$x 
        lambda.est[2,6]<-  out$iter     
    }
    if( indRefine[3]) {
        starts <- lambda.grid[IMIN[3] + c(-1,0,1)]
        out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=Krig.fgcv.one, f.extra = info, tol = tol) 
         lambda.est[3, 1] <-out$x 
          lambda.est[3,6]<-  out$iter                 
        }
    if ( indRefine[6] ){
        starts <- lambda.grid[IMIN[6] + c(-1,0,1)]
        out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
                           f=Krig.flplike, f.extra = info, tol = tol)
        lambda.est[6,1]<-  out$x
        lambda.est[6,6]<-  out$iter
     }             
    if (  indRefine[4] ) {
            guess<- gcv.grid$lambda[IMIN[4]]
            lambda.rmse <- find.upcross(Krig.fs2hat, info,
                          upcross.level = rmse^2, 
                          guess = guess, tol = tol * rmse^2)
            lambda.est[4, 1] <- lambda.rmse
        }  
    #
    # matching estimate of tau from reps.
    if (  indRefine[5] ) { 	    
            guess <- gcv.grid$lambda[IMIN[5]]     
            lambda.pure.error <- find.upcross(Krig.fs2hat, info, 
                    upcross.level = tauHat.pure.error^2, guess = guess, 
                    tol = tol * tauHat.pure.error^2)
            lambda.est[5, 1] <- lambda.pure.error
    }
    #
    # OK done with all six methods
    # NOTE that not all may 
    # fill in return matrix with all the right stuff
    # fill in REML results
    lam.ml <- lambda.est[6, 1]
    lambda.est[6, 2] <- Krig.ftrace(lam.ml, D)
    lambda.est[6, 3] <- Krig.fgcv(lam.ml, info)
    lambda.est[6, 4] <- sqrt(Krig.fs2hat(lam.ml, info))
    lambda.est[6, 5] <- Krig.flplike(lam.ml, info)
    # fill in GCV results
    for (k in 1:5) {
        lam <- lambda.est[k, 1]
        if (!is.na(lam)) {
            lambda.est[k, 2] <- Krig.ftrace(lam, D)
            if (k == 1 | k > 3) {
                lambda.est[k, 3] <- Krig.fgcv(lam, info)
                lambda.est[k, 5] <- Krig.flplike(lam, info)
            }
            if (k == 2) {
                lambda.est[k, 3] <- Krig.fgcv.model(lam, info)
            }
            if (k == 3) {
                lambda.est[k, 3] <- Krig.fgcv.one(lam, info)
            }
            lambda.est[k, 4] <- sqrt(Krig.fs2hat(lam, info))
        }
    }
    # Note that the estimate by default is
    # REML == restricted maximum likelihood. 
    if( give.warnings & any(warningTable$Warning)){
    	cat("Methods at endpoints of grid search:", fill=TRUE)
    	print(warningTable[warningTable$Warning,])
    }
    list(gcv.grid = gcv.grid,
         lambda.est = lambda.est, info=info, D=D,
         warningTable=warningTable)
}