1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"KrigFindLambda" <- function(out, lambda.grid = NA, cost = 1,
nstep.cv = 200, rmse = NA, verbose = FALSE, tol = 1e-05,
offset = 0, y = NULL, give.warnings = TRUE) {
nt <- out$nt
np <- out$np
N <- out$N
D <- out$matrices$D
# Yet another monster function called by Krig
# but there just many simple steps ...
#
# if a y data vector is not supplied then
# use the one in the Krig object
if (is.null(y)) {
u <- out$matrices$u
tauHat.pure.error <- out$tauHat.pure.error
pure.ss <- out$pure.ss
}
else {
#with new data need to update some statistics.
out2 <- Krig.make.u(out, y = y)
u <- out2$u
tauHat.pure.error <- out2$tauHat.pure.error
pure.ss <- out2$pure.ss
}
if (verbose) {
cat("u used:", fill = TRUE)
print(u)
}
#
# generate a reasonable grid of lambda based on equally spaced
# effective degrees of freedom
if (is.na(lambda.grid[1])) {
temp.df <- seq(nt, (np - offset) * 0.95, , nstep.cv)
temp.df[1] <- temp.df[1] + 0.001
for (k in 1:nstep.cv) {
lambda.grid[k] <- Krig.df.to.lambda(temp.df[k], D)
}
}
# make sure that the grid is in sorted order
lambda.grid <- sort(lambda.grid)
nl <- length(lambda.grid)
nd <- length(D)
V <- V.model <- V.one <- lplike <- trA <- tauHat <- rep(NA,
nl)
Dl <- rep(NA, nd)
#
# this is small little list used to pass information to the
# objective functions
info <- list(matrices = list(D = D, u = u), N = N, nt = nt,
cost = cost, pure.ss = pure.ss, tauHat.pure.error = tauHat.pure.error,
offset = offset)
#
# loop over lambda values for the grid search
for (k in 1:nl) {
#
# all the wonderful things calculated for each lambda
# note the use of the info list.
V[k] <- Krig.fgcv(lambda.grid[k], info)
V.one[k] <- Krig.fgcv.one(lambda.grid[k], info)
V.model[k] <- Krig.fgcv.model(lambda.grid[k], info)
lplike[k] <- Krig.flplike(lambda.grid[k], info)
tauHat[k] <- sqrt(Krig.fs2hat(lambda.grid[k], info))
trA[k] <- Krig.ftrace(lambda.grid[k], D)
}
#
# reformat as a matrix with all these values.
gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, tauHat,
lplike)
gcv.grid <- as.data.frame(gcv.grid)
names(gcv.grid) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model",
"tauHat", "-lnLike Prof")
# find minima over grid ifelse used to avoid 0 length vector from which.min
IMIN<- rep( NA, 6)
IMIN[1]<- which.min( gcv.grid$GCV )
IMIN[2]<- ifelse( is.na(tauHat.pure.error), NA,
which.min(gcv.grid$GCV.model) )
IMIN[3]<- which.min( gcv.grid$GCV.one)
if( is.na( rmse)){
IMIN[4] <- NA
}
else{
rangeShat<- range( gcv.grid$tauHat)
IUpcross<- max( (1:nl)[gcv.grid$tauHat< rmse] )
IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse),
IUpcross, NA)
}
IMIN[5]<- ifelse( is.na(tauHat.pure.error), NA,
which.min(abs(gcv.grid$tauHat-tauHat.pure.error)) )
IMIN[6]<- which.min( gcv.grid[["-lnLike Prof"]])
# NOTE IMIN indexes from smallest lambda to largest lambda in grid.
warningTable<- data.frame(
IMIN, IMIN == nl, IMIN==1,
gcv.grid$lambda[IMIN],
gcv.grid$trA[IMIN],
row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error", "REML")
)
warning<- (warningTable[,2]|warningTable[,3])&
(!is.na(warningTable[,1]))
indRefine<- (!warningTable[,2]) & (!warningTable[,3]) &
(!is.na(warningTable[,1]))
warningTable<- cbind( warning, indRefine, warningTable )
names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint",
"lambda","effdf")
# now optimze the search producing refined optima
if (verbose)
print(gcv.grid)
# setup output matrix for refined values
lambda.est <- matrix(NA, ncol = 6, nrow = 6, dimnames = list(
c("GCV", "GCV.model", "GCV.one", "RMSE", "pure error", "REML"),
c("lambda", "trA", "GCV", "tauHat","-lnLike Prof" , "converge")))
# fill in grid search estimates
for( k in 1:6){
if( !is.na(IMIN[k])){
lambda.est[k,1]<- gcv.grid$lambda[IMIN[k]]
}
}
#
# now step through the many different ways to find lambda
# This is the key to these choices:
# 1- the usual GCV proposed by Craven/Wahba
# 2- GCV where data fitting is collapsed to the mean for
# each location and each location is omitted
# 3- True leave-one-out even with replicated observations
# 4- Match estimate of tau to external value supplied (RMSE)
# 5- Match estimate of tau from the estimate based the
# pure error sum of squares obtained by the observations
# replicated at the same locations
# 6- Maxmize the restricted maxmimum likelihood (REML)
# standard GCV w/o replicates
if( verbose){
print( warningTable)
}
if(indRefine[1]){
starts <- lambda.grid[IMIN[1] + c(-1,0,1)]
out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=Krig.fgcv, f.extra = info, tol = tol)
lambda.est[1,1]<- out$x
lambda.est[1,6]<- out$iter
}
if( indRefine[2]) {
starts <- lambda.grid[IMIN[2] + c(-1,0,1)]
out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=Krig.fgcv.model, f.extra = info, tol = tol)
lambda.est[2,1]<- out$x
lambda.est[2,6]<- out$iter
}
if( indRefine[3]) {
starts <- lambda.grid[IMIN[3] + c(-1,0,1)]
out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=Krig.fgcv.one, f.extra = info, tol = tol)
lambda.est[3, 1] <-out$x
lambda.est[3,6]<- out$iter
}
if ( indRefine[6] ){
starts <- lambda.grid[IMIN[6] + c(-1,0,1)]
out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=Krig.flplike, f.extra = info, tol = tol)
lambda.est[6,1]<- out$x
lambda.est[6,6]<- out$iter
}
if ( indRefine[4] ) {
guess<- gcv.grid$lambda[IMIN[4]]
lambda.rmse <- find.upcross(Krig.fs2hat, info,
upcross.level = rmse^2,
guess = guess, tol = tol * rmse^2)
lambda.est[4, 1] <- lambda.rmse
}
#
# matching estimate of tau from reps.
if ( indRefine[5] ) {
guess <- gcv.grid$lambda[IMIN[5]]
lambda.pure.error <- find.upcross(Krig.fs2hat, info,
upcross.level = tauHat.pure.error^2, guess = guess,
tol = tol * tauHat.pure.error^2)
lambda.est[5, 1] <- lambda.pure.error
}
#
# OK done with all six methods
# NOTE that not all may
# fill in return matrix with all the right stuff
# fill in REML results
lam.ml <- lambda.est[6, 1]
lambda.est[6, 2] <- Krig.ftrace(lam.ml, D)
lambda.est[6, 3] <- Krig.fgcv(lam.ml, info)
lambda.est[6, 4] <- sqrt(Krig.fs2hat(lam.ml, info))
lambda.est[6, 5] <- Krig.flplike(lam.ml, info)
# fill in GCV results
for (k in 1:5) {
lam <- lambda.est[k, 1]
if (!is.na(lam)) {
lambda.est[k, 2] <- Krig.ftrace(lam, D)
if (k == 1 | k > 3) {
lambda.est[k, 3] <- Krig.fgcv(lam, info)
lambda.est[k, 5] <- Krig.flplike(lam, info)
}
if (k == 2) {
lambda.est[k, 3] <- Krig.fgcv.model(lam, info)
}
if (k == 3) {
lambda.est[k, 3] <- Krig.fgcv.one(lam, info)
}
lambda.est[k, 4] <- sqrt(Krig.fs2hat(lam, info))
}
}
# Note that the estimate by default is
# REML == restricted maximum likelihood.
if( give.warnings & any(warningTable$Warning)){
cat("Methods at endpoints of grid search:", fill=TRUE)
print(warningTable[warningTable$Warning,])
}
list(gcv.grid = gcv.grid,
lambda.est = lambda.est, info=info, D=D,
warningTable=warningTable)
}
|