1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
gcv.sreg<- function(out, lambda.grid = NA, cost = 1,
nstep.cv = 80, rmse = NA, offset = 0, trmin = NA, trmax = NA,
verbose = FALSE, tol = 1e-05,
give.warnings=TRUE) {
tauHat.pure.error <- out$tauHat.pure.error
pure.ss <- out$pure.ss
nt <- 2
np <- out$np
N <- out$N
out$cost <- cost
out$offset <- offset
# find good end points for lambda coarse grid.
if (is.na(trmin))
trmin <- 2.05
if (is.na(trmax))
trmax <- out$np * 0.95
if (is.na(lambda.grid[1])) {
l2 <- sreg.df.to.lambda(trmax, out$xM, out$weightsM)
l1 <- sreg.df.to.lambda(trmin, out$xM, out$weightsM)
lambda.grid <- exp(seq(log(l2), log(l1), , nstep.cv))
}
if (verbose) {
cat("endpoints of coarse lamdba grid", fill = TRUE)
cat(l1, l2, fill = TRUE)
}
# build up table of coarse grid serach results for lambda
# in the matrix gcv.grid
nl <- length(lambda.grid)
V <- V.model <- V.one <- trA <- MSE <- RSS.model <- rep(NA,
nl)
# loop through lambda's and compute various quantities related to
# lambda and the fitted spline.
for (k in 1:nl) {
temp <- sreg.fit(lambda.grid[k], out, verbose = verbose)
RSS.model[k] <- temp$rss
trA[k] <- temp$trace
V[k] <- temp$gcv
V.one[k] <- temp$gcv.one
V.model[k] <- temp$gcv.model
}
# adjustments to columns of gcv.grid
RSS <- RSS.model + pure.ss
tauHat <- sqrt(RSS/(N - trA))
gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, tauHat)
dimnames(gcv.grid) <- list(NULL, c("lambda", "trA", "GCV",
"GCV.one", "GCV.model", "tauHat"))
gcv.grid<- as.data.frame( gcv.grid)
if (verbose) {
cat("Results of coarse grid search", fill = TRUE)
print(gcv.grid)
}
lambda.est <- matrix(NA, ncol = 5, nrow = 5,
dimnames = list(
c("GCV","GCV.model", "GCV.one", "RMSE", "pure error"),
c("lambda","trA", "GCV", "tauHat", "converge")))
# now do various refinements for different flavors of finding
# a good value for lambda the smoothing parameter
##### traditional leave-one-out
IMIN<- rep( NA, 5)
IMIN[1]<- which.min( gcv.grid$GCV )
IMIN[2]<- ifelse( is.na(tauHat.pure.error), NA,
which.min(gcv.grid$GCV.model) )
IMIN[3]<- which.min( gcv.grid$GCV.one)
if( is.na( rmse)){
IMIN[4] <- NA
}
else{
rangeShat<- range( gcv.grid$tauHat)
IUpcross<- max( (1:nl)[gcv.grid$tauHat< rmse] )
IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse),
IUpcross, NA)
}
IMIN[5]<- ifelse( is.na(tauHat.pure.error), NA,
which.min(abs(gcv.grid$tauHat-tauHat.pure.error)) )
# NOTE IMIN indexes from smallest lambda to largest lambda in grid.
warningTable<- data.frame(
IMIN, IMIN == nl, IMIN==1,
gcv.grid$lambda[IMIN],
gcv.grid$trA[IMIN],
row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error") )
warning<- (warningTable[,2]|warningTable[,3])&
(!is.na(warningTable[,1]))
indRefine<- (!warningTable[,2]) & (!warningTable[,3]) &
(!is.na(warningTable[,1]))
warningTable<- cbind( warning, indRefine, warningTable )
names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint",
"lambda","effdf")
if( verbose){
print(warningTable)
}
# fill in grid search estimates
for( k in 1:5){
if( !is.na(IMIN[k])){
lambda.est[k,1]<- gcv.grid$lambda[IMIN[k]]
}
}
# now optimze the search producing refined optima
#
# now step through the many different ways to find lambda
# This is the key to these choices:
# 1- the usual GCV proposed by Craven/Wahba
# 2- GCV where data fitting is collapsed to the mean for
# each location and each location is omitted
# 3- True leave-one-out even with replicated observations
# 4- Match estimate of tau to external value supplied (RMSE)
# 5- Match estimate of tau from the estimate based the
# pure error sum of squares obtained by the observations
# replicated at the same locations
#test<- sreg.fit(.1, out)
#print( test)
if(indRefine[1]){
starts <- lambda.grid[IMIN[1] + c(-1,0,1)]
outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=sreg.fgcv, f.extra = out, tol = tol)
lambda.est[1,1]<- outGs$x
lambda.est[1,5]<- outGs$iter
}
if( indRefine[2]) {
starts <- lambda.grid[IMIN[2] + c(-1,0,1)]
outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=sreg.fgcv.model, f.extra = out, tol = tol)
lambda.est[2,1]<- outGs$x
lambda.est[2,5]<- outGs$iter
}
if( indRefine[3]) {
starts <- lambda.grid[IMIN[3] + c(-1,0,1)]
outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3],
f=sreg.fgcv.one, f.extra = out, tol = tol)
lambda.est[3, 1] <-outGs$x
lambda.est[3,5]<- outGs$iter
}
if ( indRefine[4] ) {
guess<- gcv.grid$lambda[IMIN[4]]
lambda.rmse <- find.upcross(sreg.fs2hat, out,
upcross.level = rmse^2,
guess = guess, tol = tol * rmse^2)
lambda.est[4, 1] <- lambda.rmse
}
if ( indRefine[5] ) {
guess <- gcv.grid$lambda[IMIN[5]]
lambda.pure.error <- find.upcross(sreg.fs2hat, out,
upcross.level = tauHat.pure.error^2, guess = guess,
tol = tol * tauHat.pure.error^2)
lambda.est[5, 1] <- lambda.pure.error
}
if (verbose) {
cat("All forms of estimated lambdas so far", fill = TRUE)
print(lambda.est)
}
for (k in 1:5) {
lam <- lambda.est[k, 1]
if (!is.na(lam)) {
temp <- sreg.fit(lam, out)
lambda.est[k, 2] <- temp$trace
if ((k == 1) | (k > 3)) {
lambda.est[k, 3] <- temp$gcv
}
if (k == 2) {
lambda.est[k, 3] <- temp$gcv.model
}
if (k == 3) {
lambda.est[k, 3] <- temp$gcv.one
}
lambda.est[k, 4] <- temp$tauHat
}
}
if( give.warnings & any(warningTable$Warning)){
cat("Methods at endpoints of grid search:", fill=TRUE)
print(warningTable[warningTable$Warning,])
}
list(gcv.grid = gcv.grid, lambda.est = lambda.est,
warningTable=warningTable)
}
|