1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
mKrigFastPredict <- function(object, gridList, ynew = NULL,
derivative = 0, Z = NULL, drop.Z = FALSE,
NNSize=5, setupObject= NULL,
giveWarnings=TRUE)
{
#NOTE: covariance model is specified by the arguments in object$args
#cov.args <- c( object$args, list(...) )
# For convenience the Z covariates are already assumed to be
# in the unrolled form. But this may be awkward if this
# function is called directly
# See the code in predictSurface.mKrig for details. E.g. unrollZGrid
if (derivative != 0) {
stop("Derivatives not supported with fast prediction method")
}
if( ncol(object$c.coef)>1 ){
stop("Replicated fields currently not supported for fast predict.")
}
names( gridList)<- c("x","y")
np<- NNSize
xObs<- object$x
nx<- length(gridList$x )
ny<- length(gridList$y )
if (!is.null(ynew)) {
coef.hold <- mKrig.coef(object, ynew,
collapseFixedEffect=TRUE)
c.coef <- coef.hold$c.coef
beta <- coef.hold$beta
}
else {
c.coef <- object$c.coef
beta <- object$beta
}
# fixed part of the model this a polynomial of degree m-1
# Tmatrix <- fields.mkpoly(xnew, m=object$m)
# only do this if nt>0, i.e. there is a fixed part.
#
if (!drop.Z & (object$nZ > 0) & (derivative >0) ) {
stop("derivative not supported with Z covariate included
use drop.Z = FALSE to omit Z ")
}
if( object$nt>0){
xnew<- make.surface.grid( gridList)
if (derivative == 0) {
if (drop.Z | object$nZ == 0) {
# just evaluate polynomial and not the Z covariate
temp1 <- fields.mkpoly(xnew, m = object$m) %*%
beta[object$ind.drift, ]
}
else {
if( nrow( xnew) != nrow(as.matrix(Z)) ){
stop(paste("number of rows of covariate Z",
nrow(as.matrix(Z)),
" is not the same as the number of locations",
nrow( xnew) )
)
}
temp0 <- cbind(fields.mkpoly(xnew, m = object$m),as.matrix(Z))
temp1 <- temp0 %*% beta
}
}
else {
temp1 <- fields.derivative.poly(xnew, m = object$m,
beta[object$ind.drift,])
}
}
# add nonparametric part. Covariance basis functions
# times coefficients.
# syntax is the name of the function and then a list with
# all the arguments. This allows for different covariance functions
# that have been passed as their name.
# enlarge the grid if needed so that obs have np grid point points on all margins.
if( (min(xObs[,1]) < gridList$x[1]) | (max(xObs[,1]) > gridList$x[nx] ) ) {
stop( "x obs locations can not be outside the grid ")
}
if( (min(xObs[,2]) < gridList$y[1]) | (max(xObs[,2]) > gridList$y[ny]) ){
stop( "y obs locations can not be outside the grid ")
}
# adjust grid if needed to include a margin of NNSize+1 grid points beyond xObs
# these are the slightly larger grids by adding margins.
# also create sparse matrices.
if( is.null(setupObject) ){
setupObject<- mKrigFastPredictSetup(object,
gridList = gridList,
NNSize = NNSize,
giveWarnings = giveWarnings)
}
gridListNew<- setupObject$marginInfo$gridListNew
nxNew<- length(gridListNew$x )
nyNew<- length(gridListNew$y )
# indX and indY are the subset of indices that match gridList
# ( gridListNew contains the grids in gridList)
indX<- setupObject$marginInfo$indX
indY<- setupObject$marginInfo$indY
if( ((indX[2]- indX[1] + 1)!= nx)| ((indY[2]- indY[1] + 1)!= ny)) {
cat(" indX, nx")
print( c(indX, nx) )
cat(" indY, ny")
print( c(indY, ny) )
stop("mismatch between subset of larger grid and gridList passed")
}
c.coefWghts<- colSums( diag.spam( c(object$c.coef) ) %*%
setupObject$offGridObject$B )
c.coefWghts<- matrix( c.coefWghts, nxNew, nyNew )
# fast multiplication of covariances on the grid with
# the coefficients on the grid
temp2<- stationary.image.cov( Y=c.coefWghts, cov.obj=setupObject$cov.obj)
# cut down the size of temp2 trimming off margins using to approximate
# exact covariance kernel.
temp2<- temp2[ indX[1]:indX[2], indY[1]:indY[2] ]
# add fixed part and spatial parts together and coerce to matrix
if( object$nt>0){
return( (matrix(temp1,nx,ny) + temp2) )
}
else{
# return only the spatial part because the fixed part is absent.
return( temp2)
}
}
|