1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
mKrigMLEJoint<- function(x, y, weights = rep(1, nrow(x)), Z = NULL,
ZCommon = NULL,
mKrig.args = NULL,
na.rm = TRUE,
cov.function = "stationary.cov",
cov.args = NULL,
cov.params.start = NULL,
optim.args = NULL,
reltol = 1e-6,
parTransform = NULL,
REML = FALSE,
GCV = FALSE,
hessian = FALSE,
iseed = 303,
verbose = FALSE) {
# overwrite basic data to remove NAs this has be done in case distance
# matrices are precomputed (see below)
if( na.rm){
obj<- mKrigCheckXY(x, y, weights, Z, ZCommon, na.rm)
x<- obj$x
y<- obj$y
weights<- obj$weights
Z<- obj$Z
ZCommon<- obj$ZCommon
}
# main way to keep track of parameters to optimize
# lambda is included if lambda.fixed is NULL
# (most of the time one would want to optimize over lambda parameter)
parNames <- names(cov.params.start)
# precompute distance matrix if possible so it only needs to be computed once
supportsDistMat = supportsArg(cov.function, "distMat")
if(supportsDistMat & is.null( cov.args$distMat)) {
#Get distance function and arguments if available
#
Dist.fun= c(cov.args)$Distance
Dist.args=c(cov.args)$Dist.args
#If user left all distance settings NULL, use rdist with compact option.
#Use rdist function by default in general.
#
if(is.null(Dist.fun)) {
Dist.fun = "rdist"
if(is.null(Dist.args))
Dist.args = list(compact=TRUE)
}
distMat = do.call(Dist.fun, c(list(x), Dist.args))
#add precomputed distance matrix to the cov.args
cov.args = c(cov.args, list(distMat=distMat, onlyUpper=TRUE))
}
# these are all the arguments needed to call mKrig except cov.args
# if lambda is then it has been added to mKrig.args
# if lambda.start then it is part of the parameter names and will
# added in the cov.args list
mKrig.args <- c(list(x = x, y = y, weights = weights, Z = Z, ZCommon = ZCommon ),
mKrig.args,
list(cov.function=cov.function)
)
if( verbose){
cat("***** Info from call to mKrigJoint:",fill=TRUE)
cat("Argument names in full mKrig.args: ", fill=TRUE)
print( names(mKrig.args) )
cat("Full cov.args names:\n ", names( cov.args), fill=TRUE)
cat("Parameters to optimze: ", parNames, length( parNames), fill=TRUE)
cat("Starting values (cov.params.start) : ", fill=TRUE)
print( cov.params.start)
}
if(!GCV){
nameCriterion<- ifelse( !REML,
"lnProfileLike.FULL",
"lnProfileREML.FULL" )
}
else{
nameCriterion<-"GCV"
}
if(verbose){
cat("nameCriterion: ", nameCriterion, fill=TRUE)
}
callOptim<- !is.null(cov.params.start) & length(parNames) > 0
##########################################################################
###### main if else block
##########################################################################
if(callOptim){
#########################################################
### actually do something
#set default optim.args if necessary
# abstol is anticipating this is a log likelihood so differencs of 1e-4 are not appreciable
#
# setup control parameters for optim ....
if( length(cov.params.start)==0){
stop("On no! Found zero parameters to optimize!")
}
if(is.null(optim.args)){
# number of step sizes either include lambda as a parameter or not.
ndeps<- rep(log(1.1), length( parNames) )
optim.args = list(method = "BFGS", hessian = hessian,
control=list(fnscale = -1,
ndeps = ndeps,
reltol = reltol,
maxit = 20)
)
}
if( is.null(parTransform)){
# parTransform: log/exp
parTransform<- function( ptemp, inv=FALSE){
if( !inv){ log( ptemp)}
else{
exp(ptemp)
}
}
}
#
capture.evaluations <- NULL
capture.env <- environment()
# call to optim with initial start (default is log scaling )
#
init.start <- parTransform( unlist(c(cov.params.start)), inv=FALSE)
if( verbose){
cat("Transformed starting values ","\n", init.start, fill=TRUE)
}
# and now the heavy lifting ...
# optimize over (some) covariance parameters and possibly lambda
# wrapping in try allows for error catching
optimResults <-try(
do.call(optim, c(list(par=init.start),
list(mKrigJointTemp.fn),
optim.args,
list( parNames = parNames,
parTransform = parTransform,
mKrig.args = mKrig.args,
cov.args = cov.args,
capture.env = capture.env,
REML = REML,
GCV = GCV,
verbose = verbose)
)
)
)
# catch error in optim and return
if( is(optimResults, "try-error") ){
cat("Error in call to optim", fill=TRUE)
out =list( summary = NA,
lnLikeEvaluations = capture.evaluations[-1,],
init.start= init.start,
optim.args= optim.args
)
return( out)
}
# reformat the optim results
lnLikeEvaluations <- capture.evaluations[-1,] # first row is just NAs
if( verbose){
cat("Captured evaluations from optim: ", fill=TRUE)
print(lnLikeEvaluations)
}
#ind<- which(lnLikeEvaluations[ , nameCriterion]
# == optimResults$value )
#ind<- max(ind)
optim.counts <- optimResults$counts
parOptimum<- parTransform(optimResults$par, inv=TRUE)
names( parOptimum)<- parNames
# update parameter start values with converged ones
# note that lambda may be part of this
cov.params.final<- as.list(parOptimum)
}
##########################################################################
###### end if block
##########################################################################
else{
# no optimization required, just setup for a single evaluation
cov.params.final <- NULL
lnLike.eval <- NA
optimResults <- NULL
optim.counts <- NA
parOptimum <- NULL
lnLikeEvaluations<- NULL
if( verbose){
cat("fast return in mKrigMLEJoint", fill=TRUE)
}
}
#########################################################
### just evaluate
### at final parameters or if a fast return
### and also find the trace and GCV
#########################################################
cov.args.final<- c( cov.args, cov.params.final)
mKrigCallingArgs<- c(mKrig.args, iseed = iseed,
verbose=verbose,
cov.args.final)
if( verbose){
cat("**** Final call in mKrigMLEJoint", fill=TRUE)
cat( names(mKrigCallingArgs ), sep=",", fill=TRUE)
cat("aRange", mKrigCallingArgs$cov.args$aRange,fill=TRUE)
print( mKrigCallingArgs$aRange)
}
fastObject <- do.call("mKrig", mKrigCallingArgs )$summary
#########################################################
summary <- c( fastObject, optim.counts,
parOptimum
)
out =list( summary = summary,
pars.MLE = parOptimum ,
parTransform = parTransform,
optimResults = optimResults ,
lnLikeEvaluations = lnLikeEvaluations)
return(out)
}
# Define the objective function as a tricksy call to mKrig
# if y is a matrix of replicated data sets use the log likelihood for the complete data sets
mKrigJointTemp.fn <- function(parameters,
mKrig.args, cov.args, parTransform, parNames,
REML=FALSE,
GCV= FALSE,
verbose = verbose,
capture.env) {
verbose<- FALSE # turn off verbose
# optimization is over a transformed scale ( so need to back transform for mKrig)
tPars<- parTransform( parameters, inv=TRUE)
names( tPars)<- parNames
#get all this eval's covariance arguments using the input parameters
cov.args.temp = c(cov.args, tPars)
if( verbose){
cat("pars in call to objective function:", fill=TRUE)
print(tPars )
}
# NOTE: FULL refers to estimates collapsed across the replicates if Y is a matrix
# NOTE cov.args.temp can also include lambda as a component.
# due to the flexibility in arguments to mKrig ( I.e. the ... argument)
# any covariance arguments in cov.args.temp are matched to existing mKrig arguments
# in particular lambda, the remaining unmatched arguments are assumed to be for the
# covariance function and used within mKrig in the call to cov.fun
#
# Don't find approx trace of A for log likelihood evaluations.
mKrig.argsTemp<- mKrig.args
if( !GCV){
mKrig.argsTemp$find.trA<- FALSE
}
# the summary vector from the mKrig object has everything we need ...
hold <- do.call("mKrig", c(mKrig.argsTemp,cov.args.temp) )$summary
# add this evalution to an object (i.e. here a matrix) in the calling frame
temp.eval <- get("capture.evaluations", envir=capture.env)
assign("capture.evaluations",
rbind(temp.eval,
c(parTransform(parameters, inv=TRUE), hold)
),
envir = capture.env)
if( !GCV){
objectiveFunction <- ifelse(REML,
hold["lnProfileREML.FULL"],
hold["lnProfileLike.FULL"])
}
else{
objectiveFunction <- -1* hold["GCV"]
}
# cat("objective Function",objectiveFunction, fill=TRUE)
return( objectiveFunction)
}
|