File: predict.Krig.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (139 lines) | stat: -rw-r--r-- 4,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER

# wrapper for Tps object 
"predict.Tps"<- function(object, ...){
  UseMethod("Krig")
 }

"predict.Krig" <- function(object, x = NULL, Z = NULL, 
    drop.Z = FALSE, just.fixed = FALSE, lambda = NA, df = NA, 
    model = NA, eval.correlation.model = TRUE, y = NULL, yM = NULL, 
    verbose = FALSE, ...) {
    #NOTE: most of this function is figuring out what to do!
    #
    # check that derivative is not called
    if (!is.null(list(...)$derivative)) {
        stop("For derivatives use predictDerivative")
    }
    # y is full data yM are the data collapsed to replicate means
    # if new data is not passed then copy from the object
    if (is.null(y) & is.null(yM)) {
        temp.c <- object$c
        temp.d <- object$d
    }
    # check for passed x but no Z -- this is an error
    # if there  are Z covariates in the model and drop.Z is FALSE
    ZinModel<- !is.null(object$Z)
    newX<- !is.null(x)
    missingZ<- is.null(Z)
    if( ZinModel&newX){
    if( missingZ  & !drop.Z) {
        stop("Need to specify drop.Z as TRUE or pass Z values")
    }
    }
    # default is to predict at data x's
    if (is.null(x)) {
        x <- object$x
    }
    else {
        x <- as.matrix(x)
    }
    # default is to predict at data Z's
    if (is.null(Z)) {
        Z <- object$Z
    }
    else {
        Z <- as.matrix(Z)
    }
    if (verbose) {
        print(x)
        print(Z)
    }
    # transformations of x values used in Krig
    xc <- object$transform$x.center
    xs <- object$transform$x.scale
    x <- scale(x, xc, xs)
    # NOTE knots are already scaled in Krig object and are used
    # in transformed scale.
    #  i.e.   knots <- scale( object$knots, xc, xs)
    #
    # figure out if the coefficients for the surface needto be recomputed.
    find.coef<- (!is.null(y) | !is.null(yM) | !is.na(lambda) | 
        !is.na(df) | !is.na(model[1]))
    if (verbose) {
        cat("find.coef", find.coef, fill = TRUE)
    }
    #   convert effective degrees of freedom to equivalent lambda
    if (!is.na(df)) {
        lambda <- Krig.df.to.lambda(df, object$matrices$D)
    }
    if (!is.na(model)) {
        lambda <- model[1]
    }
    if (is.na(lambda)) 
        lambda <- object$lambda
    #
    # if the coefficients need to be recomputed  do it.
    if (find.coef) {
        if (verbose) {
            cat("new coefs found", fill = TRUE)
        }
        object3 <- Krig.coef(object, lambda = lambda, y = y, 
            yM = yM)
        temp.d <- object3$d
        temp.c <- object3$c
    }
    if (verbose) {
        cat(" betas", fill = TRUE)
        print(temp.d)
        cat("c coefs", fill = TRUE)
        print(temp.c)
    }
    
    # this is the fixed part of predictor
    #
    Tmatrix <- do.call(object$null.function.name, c(object$null.args, 
        list(x = x, Z = Z, drop.Z = drop.Z)))
    if (drop.Z) {
        temp <- Tmatrix %*% temp.d[object$ind.drift]
    }
    else {
        temp <- Tmatrix %*% temp.d
    }
    # add in spatial piece
    if (!just.fixed) {
        #
        # Now find sum of covariance functions times coefficients
        # Note that the multiplication of the cross covariance matrix
        # by the coefficients is done implicitly in the covariance function
        #
        # The covariance function is
        # evaluated by using its name, the do.call function, and any
        # additional arguments.
        #
        temp <- temp + do.call(object$cov.function.name, c(object$args, 
            list(x1 = x, x2 = object$knots, C = temp.c)))
    }

    return(temp)
}